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1 Introduction

Fractional calculus is playing an important role in modern control areas. Stability

theory of fractional differential equations is frequently used in fractional controllers. But
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due to fractional operators depend on the value of past state, it is difficult to extend the

normal Lyapunov stability results to fractional cases since the Leibniz law becomes very

complicated and does not hold in general.

Matignon [1] proposes an explicit stability condition for a linear fractional differential

systems. The articles [2, 3] present the fractional Lyapunov direct method to the fractional

order differential systems, for the applications of this method, see [4–6]. However, it is a

difficult task to find an appropriate Lyapunov function by means of this method. Some

authors have proposed Lyapunov functions to prove the stability of the fractional order

systems. For the application of this method, we refer to [7–13].

The (q, h)-fractional difference equations have received a lot of attention recently, the

basic theory and its applications can be found in [14–20]. In this paper, we use the idea

[11] to analyse the stability and asymptotical stability of the nabla (q, h)-fractional differ-

ence equations. Firstly, we prove the stability theorems of discrete fractional Lyapunov

direct method for the special nabla (q, h)-fractional difference equations. Further, we

present some new lemmas, which enable us to determine the stability of such equations

by establishing Lyapunov functions. Then, using these lemmas and discrete fractional

Lyapunov direct method, we give sufficient conditions for these equations to be stable or

asymptotically stable. Finally, some examples are given to illustrate our main results.

2 Preliminaries

We recall some notation of (q, h)-calculus (for details, see [14, 15]). For any real

number α and any q > 0, q 6= 1, we set [α]q := qα−1
q−1 . The extension of the q-binomial

coefficient to the non-integer value n is given via the q̃-Gamma function Γq̃(t) defined for

0 < q̃ < 1 as follows:

Γq̃(t) :=
(q̃, q̃)∞(1− q̃)1−t

(q̃t, q̃)∞
, 0 < q̃ < 1,

where (a, q̃)∞ =
∏∞

j=0(1 − aq̃j) and t ∈ R\{0,−1,−2, ...}. It is easy to check that Γq̃

satisfies Γq̃(t+ 1) = [t]q̃Γq̃(t). The q̃-analogue of the power function is introduced as

(t− s)(α)q̃ = tα
(s/t, q̃)∞

(q̃αs/t, q̃)∞
, t 6= 0, 0 < q̃ < 1, α ∈ R.
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For α = n a positive integer, this expression reduces to

(t− s)(n)q̃ = tn
n−1∏
j=0

(
1− q̃j s

t

)
.

Here, the (q, h)-set is defined by:

Tt0(q,h) = {t0qk + [k]qh, k ∈ Z} ∪
{ h

1− q

}
, t0 > 0, q ≥ 1, h ≥ 0, q + h > 1.

Note that if q = 1 then the cluster point h/(1 − q) = −∞ is not involved in Tt0(q,h). The

forward and backward jump operator is the linear function σ(t) = qt + h and ρ(t) =

q−1(t−h), respectively. Similarly, the forward and backward graininess is given by µ(t) =

(q − 1)t+ h and ν(t) = q−1µ(t), respectively. Observe that

σk(t) = qkt+ [k]qh, and ρk(t) = q−k(t− [k]qh).

Let a ∈ Tt0(q,h), a > h/(1− q) be fixed. Then we introduce restrictions of the time scale

Tt0(q,h) by the relation

T̃σ
i(a)

(q,h) = {t ∈ T̃t0(q,h), t ≥ σi(a)}, i = 0, 1, ...,

where the symbol σi stands for the ith iterate of σ (analogously, we use the symbol ρi).

To simply the notation, we put q̃ = 1/q whenever considering the time scale Tt0(q,h) or

T̃σ
i(a)

(q,h) . The nabla (q, h)-difference of the function x : Tt0(q,h) → R is defined by

(∇(q,h)x)(t) :=
x(t)− x(ρ(t))

ν(t)
=
x(t)− x(q̃(t− h))

(1− q̃)t+ q̃h

where q̃ = 1/q. The nabla (q, h)-fractional power functions and the (q, h)-Taylor mono-

mials of degree α are defined by

(t− s)(α)(q̃,h) = ([t]− [s])
(α)
q̃ ,

ĥα(t, s) :=
(t− s)(α)(q̃,h)

Γq̃(α + 1)
, α ∈ R,

respectively, where [t] = t+ hq̃/(1− q̃) and [s] = s+ hq̃/(1− q̃), 0 < q̃ < 1. The following

relations

ν(t) = [t](1− q̃),
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ν(ρk(t)) = q−kν(t),

[s]

[t]
= q̃n

hold for s, t ∈ Tt0(q,h), if there exists n ∈ N0 such that t = σn(s). The nabla (q, h)-integral

of x : [a, t] ∩ T̃a(q,h) :→ R is defined by∫ t

a

x(τ)∇τ :=
k∑
i=1

x(σi(a))ν(σi(a)),

where t = σk(a), k ≥ 1, and by convention
∫ a
a
x(τ)∇τ = 0.

Definition 2.1. (See [14, Definition 1]). The Riemann-Liouville nabla (q, h)-fractional

sum of order α > 0 over the set T̃a(q,h) is defined by

(a∇−α(q,h)x)(t) =

∫ t

a

ĥα−1(t, ρ(τ))x(τ)∇τ. (2.1)

Definition 2.2. (See [14, Definition 3]). Assume α > 0, n = dαe, that is, n is the ceiling

of α. Then the Riemann-Liouville nabla (q, h)-fractional difference of order α over the set

T̃σ
n(a)

(q,h) is defined by

(a∇α
(q,h)x)(t) = (∇n

(q,h)(a∇
−(n−α)
(q,h) x))(t). (2.2)

Lemma 2.1. Assume α > 0, n = dαe, that is, n is the ceiling of α. Then the following

formula is equivalent to (2.2)

(a∇α
(q,h)x)(t) =


∫ t

a

ĥ−α−1(t, ρ(τ))x(τ)∇τ, α ∈ (n− 1, n), t ∈ T̃σ
n(a)

(q,h) ,

(∇n
(q,h)x)(t), α = n, t ∈ T̃σ

n(a)
(q,h) .

(2.3)

Proof. If α = n, we have

(a∇α
(q,h)x)(t) = (∇n

(q,h)(a∇
−(n−α)
(q,h) x))(t) = (∇n

(q,h)(a∇−0(q,h)x))(t) = (∇n
(q,h)x)(t).

If α ∈ (n− 1, n), we have

(a∇α
(q,h)x)(t) = (∇n

(q,h)(a∇
−(n−α)
(q,h) x))(t) =

(
∇n−1

(q,h)∇(q,h)

(∫ t

a

ĥn−α−1(t, ρ(τ))x(τ)∇τ
))
.

Taking the difference with respect to t, and using (see [15, Lemma 2.3]) t∇(q,h)ĥ−α(t, ρ(τ)) =

ĥ−α−1(t, ρ(τ)), we get

∇(q,h)

(∫ t

a

ĥn−α−1(t, ρ(τ))x(τ)∇τ
)
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=
1

ν(t)

(∫ t

a

ĥn−α−1(t, ρ(τ))x(τ)∇τ −
∫ ρ(t)

a

ĥn−α−1(ρ(t), ρ(τ))x(τ)∇τ
)

=

∫ t

a
t∇(q,h)(ĥn−α−1(t, ρ(τ))x(τ))∇τ + ĥn−α−1(ρ(t), ρ(t))x(t)

=

∫ t

a

ĥn−α−2(t, ρ(τ))x(τ)∇τ.

Hence, we have

(a∇α
(q,h)x)(t) = ∇n−1

(q,h)

∫ t

a

ĥn−α−2(t, ρ(τ))x(τ)∇τ.

Repeating the similar procedure n− 1 times, we obtain

(a∇α
(q,h)x)(t) =

∫ t

a

ĥ−α−1(t, ρ(τ))x(τ)∇τ.

The proof is complete.

Definition 2.3. (See [16, p. 2218]). Assume α > 0, n = dαe, that is, n is the ceiling

of α. Then the Caputo nabla (q, h)-fractional difference of order α over the set T̃σ
n(a)

(q,h) is

defined by

(Ca∇α
(q,h)x)(t) = (a∇−(n−α)(q,h) (∇n

(q,h)x))(t) =

∫ t

a

ĥn−α−1(t, ρ(τ))(∇n
(q,h)x)(τ)∇τ. (2.4)

Lemma 2.2. (See [16, Theorem 3.9]). Assume α ∈ R and n ∈ N1 so that n− 1 < α ≤ n.

Then

a∇−α(q,h)
C
a∇α

(q,h)x(t) = x(t)−
n−1∑
k=0

ĥk(t, a)∇k
(q,h)x(a), t ∈ T̃a(q,h). (2.5)

The following corollary appears in Du et al [18, Corollary 4.6].

Corollary 2.1. Assume x : T̃a(q,h) → R, q > 1, and 0 < α < 1. Then

(σ(a)∇−α(q,h)(∇(q,h)x))(t) = (∇(q,h)(a∇−α(q,h)x))(t)− x(σ(a))ĥα−1(t, a), t ∈ T̃σ(a)(q,h). (2.6)

Lemma 2.3. Assume x, y : T̃a(q,h) → R and b, c ∈ T̃a(q,h), b < c. Then we have the

integration by parts formula:∫ c

b

x(ρ(t))(∇(q,h)y)(t)∇t = x(t)y(t)|ct=b −
∫ c

b

y(t)(∇(q,h)x)(t)∇t. (2.7)
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Proof. From the definition of nabla (q, h)-difference, we have

∇(q,h)(x(t)y(t))

=
x(t)y(t)− x(ρ(t))y(ρ(t))

ν(t)

=
x(ρ(t))[y(t)− y(ρ(t))] + y(t)[x(t)− x(ρ(t))]

ν(t)

= x(ρ(t))(∇(q,h)y)(t) + y(t)(∇(q,h)x)(t).

Integrating from b to c on both sides of the above formula, we have (2.7) holds. The proof

is complete.

Now, we give the following remark, it is essential for our main results.

Remark 2.1. For 0 < α < 1, 0 < q̃ < 1, 1 ≤ j ≤ k1, k1 + 1 ≤ k2, we have

ĥ−α(σk2(a), σj−1(a))− ĥ−α(σk1(a), σj−1(a))

=
(σk2(a)− σj−1(a))

(−α)
(q̃,h)

Γq̃(−α + 1)
−

(σk1(a)− σj−1(a))
(−α)
(q̃,h)

Γq̃(−α + 1)

=
([σk2(a)]− [σj−1(a)])

(−α)
q̃

Γq̃(−α + 1)
−

([σk1(a)]− [σj−1(a)])
(−α)
q̃

Γq̃(−α + 1)

=
[σk2(a)]−α( [σ

j−1(a)]

[σk2 (a)]
, q̃)∞

Γq̃(−α + 1)(q̃−α [σj−1(a)]

[σk2 (a)]
, q̃)∞

−
[σk1(a)]−α( [σ

j−1(a)]

[σk1 (a)]
, q̃)∞

Γq̃(−α + 1)(q̃−α [σj−1(a)]

[σk1 (a)]
, q̃)∞

=
[σk2(a)]−α(q̃k2−j+1, q̃)∞

Γq̃(−α + 1)(q̃−ν+k2−j+1, q̃)∞
− [σk1(a)]−α(q̃k1−j+1, q̃)∞

Γq̃(−α + 1)(q̃−α+k1−j+1, q̃)∞

=
[σk2(a)]−α

∏∞
i=0(1− q̃k2−j+1+i)

Γq̃(−α + 1)
∏∞

i=0(1− q̃−α+k2−j+1+i)
− [σk1(a)]−α

∏∞
i=0(1− q̃k1−j+1+i)

Γq̃(−α + 1)
∏∞

i=0(1− q̃−α+k1−j+1+i)

=
q̃k2α(a+ h

q−1)−α
∏∞

i=0(1− q̃k2−j+1+i)

Γq̃(−α + 1)
∏∞

i=0(1− q̃−α+k2−j+1+i)
−
q̃k1α(a+ h

q−1)−α
∏∞

i=0(1− q̃k1−j+1+i)

Γq̃(−α + 1)
∏∞

i=0(1− q̃−α+k1−j+1+i)

=
[
q̃k2α−k1α − (1− q̃k1−j+1) · · · (1− q̃k2−j)

(1− q̃−α+k1−j+1) · · · (1− q̃−α+k2−j)

]
×
q̃k1α(a+ h

q−1)−α
∏∞

i=0(1− q̃k2−j+1+i)

Γq̃(−α + 1)
∏∞

i=0(1− q̃−α+k2−j+1+i)
< 0.

For 0 < α < 1, 0 < q̃ < 1, 1 ≤ j ≤ k, we have

ĥ−α(σk(a), σj−1(a)) =
(σk(a)− σj−1(a))

(−α)
(q̃,h)

Γq̃(−α + 1)
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=
([σk(a)]− [σj−1(a)])

(−α)
q̃

Γq̃(−α + 1)

=
[σk(a)]−α( [σ

j−1(a)]
[σk(a)]

, q̃)∞

Γq̃(−α + 1)(q̃−α [σj−1(a)]
[σk(a)]

, q̃)∞

=
[σk(a)]−α(q̃k−j+1, q̃)∞

Γq̃(−α + 1)(q̃−α+k−j+1, q̃)∞

=
[σk(a)]−α

∏∞
i=0(1− q̃k−j+1+i)

Γq̃(−α + 1)
∏∞

i=0(1− q̃−α+k−j+1+i)
> 0.

For 0 < α ≤ 1, 0 < q̃ < 1, 1 ≤ j ≤ k, we have

ĥα−1(σ
k(a), σj−1(a)) =

(σk(a)− σj−1(a))
(α−1)
(q̃,h)

Γq̃(α)

=
([σk(a)]− [σj−1(a)])

(α−1)
q̃

Γq̃(α)

=
[σk(a)]α−1( [σ

j−1(a)]
[σk(a)]

, q̃)∞

Γq̃(α)(q̃α−1 [σ
j−1(a)]
[σk(a)]

, q̃)∞

=
[σk(a)]α−1(q̃k−j+1, q̃)∞

Γq̃(α)(q̃α+k−j, q̃)∞

=
[σk(a)]α−1

∏∞
i=0(1− q̃k−j+1+i)

Γq̃(α)
∏∞

i=0(1− q̃α+k−j+i)
> 0.

For 0 < α < 1, 0 < q̃ < 1, 1 ≤ j ≤ k − 1, we have

ĥ−α−1(σ
k(a), σj−1(a)) =

(σk(a)− σj−1(a))
(−α−1)
(q̃,h)

Γq̃(−α)

=
([σk(a)]− [σj−1(a)])

(−α−1)
q̃

Γq̃(−α)

=
[σk(a)]−α−1( [σ

j−1(a)]
[σk(a)]

, q̃)∞

Γq̃(−α)(q̃−α−1 [σ
j−1(a)]
[σk(a)]

, q̃)∞

=
[σk(a)]−α−1(q̃k−j+1, q̃)∞
Γq̃(−α)(q̃−α+k−j, q̃)∞

=
[σk(a)]−α−1

∏∞
i=0(1− q̃k−j+1+i)

Γq̃(−α)
∏∞

i=0(1− q̃−α+k−j+i)
< 0,

ĥ−α−1(σ
k(a), σk−1(a)) =

(σk(a)− σk−1(a))
(−α−1)
(q̃,h)

Γq̃(−α)
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=
([σk(a)]− [σk−1(a)])

(−α−1)
q̃

Γq̃(−α)

=
[σk(a)]−α−1( [σ

k−1(a)]
[σk(a)]

, q̃)∞

Γq̃(−α)(q̃−α−1 [σ
k−1(a)]
[σk(a)]

, q̃)∞

=
[σk(a)]−α−1(q̃, q̃)∞
Γq̃(−α)(q̃−α, q̃)∞

=
[σk(a)]−α−1

∏∞
i=0(1− q̃1+i)

Γq̃(−α)
∏∞

i=0(1− q̃−α+i)
> 0.

For q > 1, 1 ≤ j ≤ k, we have

ν(σj(a)) = σj(a)− ρ(σj(a))

= σj(a)− σj−1(a)

=
(
qja+

qj − 1

q − 1
h
)
−
(
qj−1a+

qj−1 − 1

q − 1
h
)

= qj−1a(q − 1) + qj−1h

> qj−1(q − 1)
h

1− q
+ qj−1h

= 0,

where we used a > h
1−q .

3 Basic Definitions and Lemmas

In this section, we will present some basic definitions and lemmas, which are important

for our main results.

Consider the following nonlinear nabla (q, h)-fractional difference equations (Ca∇α
(q,h)x)(t) = f(t, x(t)), t ∈ T̃σ(a)(q,h),

x(a) = x0,
(3.1)

where f : T̃σ(a)(q,h) × R→ R, x : T̃a(q,h) → R, and α ∈ (0, 1], and (a∇α
(q,h)x)(t) = f(t, x(t)), t ∈ T̃σ

2(a)
(q,h) ,

x(σ(a)) = x0,
(3.2)

where f : T̃σ
2(a)

(q,h) × R→ R, x : T̃σ(a)(q,h) → R, and α ∈ (0, 1]. It is easy to see that equations

(3.1) and (3.2) has a unique solution.
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The constant xeq is an equilibrium point of equation (3.1) (or (3.2)) if and only if

(Ca∇α
(q,h)xeq)(t) = f(t, xeq(t)) = 0 ((a∇α

(q,h)xeq)(t) = f(t, xeq(t)) in the case of the Riemann-

Liouville nabla (q, h)-fractional difference equation) for all t ∈ T̃σ(a)(q,h).

Assume that f(t, 0) = 0 so that the trivial solution x ≡ 0 is an equilibrium point of

equation (3.1) (or (3.2)). Note that there is no loss of generality in doing so because any

equilibrium point can be shifted to the origin via a change of variables.

First, we present the following simple definitions and important facts.

Definition 3.1. The equilibrium point x = 0 of equation (3.1) (or (3.2)) is said to be

(a) stable, if for each ε > 0 and n0 ∈ N0, there exists δ = δ(ε, n0) > 0 such that

‖x(a)‖ < δ(ε, n0) (or ‖x(σ(a))‖ < δ(ε, n0)) implies ‖x(σk(a))‖ < ε for all k ∈ Nn0 .

(b) attractive, if there exists δ(n0) > 0 such that ‖x(a)‖ < δ(n0) (or ‖x(σ(a))‖ < δ(n0))

implies limk→∞ x(σk(a)) = 0.

(c) asymptotically stable, if it is stable and attractive.

The equation (3.1) (or (3.2)) is called stable (asymptotically stable) if their equilibrium

point x = 0 is stable (asymptotically stable).

Definition 3.2. (See [21, Definition 3.2]). A function φ(r) is said to belong to the class

K if and only if φ ∈ C[[0, ρ),R+], φ(0) = 0, and φ(r) is strictly monotonically increasing

in r.

Definition 3.3. A real valued function V (t, x) defined on T̃a(q,h) × Sρ, where Sρ = {x ∈

Rn : ‖x‖ ≤ ρ}, is said to be positive definite if and only if V (t, 0) = 0 for all t ∈ T̃a(q,h)
and there exists φ ∈ K such that φ(r) ≤ V (t, x), ‖x‖ = r, (t, x) ∈ T̃a(q,h) × Sρ.

Definition 3.4. A real valued function V (t, x) defined on T̃a(q,h) × Sρ, where Sρ = {x ∈

Rn : ‖x‖ ≤ ρ}, is said to be decrescent if and only if V (t, 0) = 0 for all t ∈ T̃a(q,h) and

there exists φ ∈ K such that V (t, x) ≤ φ(r), ‖x‖ = r, (t, x) ∈ T̃a(q,h) × Sρ.

Now, we give the following lemmas for the Caputo nabla (q, h)-fractional difference,

which will be useful for proving the stability of equation (3.1). The proof of Lemmas

3.2-3.4 is motivated by the proof in [8, Lemmas 2.7-2.9].

9



Lemma 3.1. Assume (Ca∇α
(q,h)x)(t) ≥ (Ca∇α

(q,h)y)(t), t ∈ T̃σ(a)(q,h), x(a) ≥ y(a), and α ∈ (0, 1].

Then we have x(t) ≥ y(t) for t ∈ T̃a(q,h).

Proof. Let F (t) := x(t)− y(t). For α = 1, we have

(Ca∇α
(q,h)F )(t) = (∇(q,h)F )(t) ≥ 0,

it is easy to see x(t) ≥ y(t) for t ∈ T̃a(q,h).

For α ∈ (0, 1), since (Ca∇α
(q,h)x)(t) ≥ (Ca∇α

(q,h)y)(t), we have

(Ca∇α
(q,h)F )(t) ≥ 0,

which can be written as ∫ t

a

ĥ−α(t, ρ(τ))(∇(q,h)F )(τ)∇τ ≥ 0.

By the integration by parts formula (2.7), we have

ĥ−α(t, τ)F (τ)|tτ=a +

∫ t

a

ĥ−α−1(t, ρ(τ))F (τ)∇τ ≥ 0.

Letting t = σk(a), k ≥ 1, we have

−ĥ−α(σk(a), a)F (a) +
k∑
j=1

ĥ−α−1(σ
k(a), σj−1(a))F (σj(a))ν(σj(a)) ≥ 0.

Since ĥ−α(σk(a), a) > 0, ĥ−α−1(σ
k(a), σk−1(a)) > 0, ĥ−α−1(σ

k(a), σj−1(a)) < 0, 1 ≤ j ≤

k − 1, ν(σj(a)) > 0, 1 ≤ j ≤ k, and x(a) ≥ y(a) are true. When k = 1, we have

x(σ(a)) ≥ y(σ(a)). Suppose F (σj(a)) ≥ 0, 0 ≤ j ≤ k − 1, by strong induction, we obtain

F (t) ≥ 0, that is, x(t) ≥ y(t) for t ∈ T̃a(q,h). The proof is complete.

Consider the following fractional difference equation

(Ca∇α
(q,h)x)(t) = −γ(x(t)), x(a) = x0, α ∈ (0, 1], t ∈ T̃σ(a)(q,h), (3.3)

where γ ∈ K and x(t) is a positive definite and decrescent function. We can easily show

this equation has a unique solution.

Lemma 3.2. Assume x(t) is a solution of equation (3.3), and x(a) > 0. Then (∇(q,h)x)(t) <

0 for t ∈ T̃σ(a)(q,h).
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Proof. We assume that there exists a first point t1 such that (∇(q,h)x)(t) ≥ 0 on [σ(t1), t2]∩

T̃a(q,h), where t1 ∈ T̃σ(a)(q,h), t2 ∈ T̃σ
2(a)

(q,h) , and (∇(q,h)x)(t) < 0 on [σ(a), t1] ∩ T̃a(q,h). For α = 1,

we have

(Ca∇α
(q,h)x)(t2)− (Ca∇α

(q,h)x)(t1) = (∇(q,h)x)(t2)− (∇(q,h)x)(t1) > 0.

For α ∈ (0, 1), by Definition 2.3, we have

(Ca∇α
(q,h)x)(t2)− (Ca∇α

(q,h)x)(t1)

=

∫ t2

a

ĥ−α(t2, ρ(τ))(∇(q,h)x)(τ)∇τ −
∫ t1

a

ĥ−α(t1, ρ(τ))(∇(q,h)x)(τ)∇τ

t1=σk1 (a), t2=σk2 (a)
===============
k1≥1, k2≥2, k2≥k1+1

k2∑
j=1

ĥ−α(σk2(a), σj−1(a))(∇(q,h)x)(σj(a))ν(σj(a))

−
k1∑
j=1

ĥ−α(σk1(a), σj−1(a))(∇(q,h)x)(σj(a))ν(σj(a))

=

k1∑
j=1

(ĥ−α(σk2(a), σj−1(a))− ĥ−α(σk1(a), σj−1(a)))(∇(q,h)x)(σj(a))ν(σj(a))

+

k2∑
j=k1+1

ĥ−α(σk2(a), σj−1(a))(∇(q,h)x)(σj(a))ν(σj(a)) > 0,

where ĥ−α(σk2(a), σj−1(a))− ĥ−α(σk1(a), σj−1(a)) < 0, 1 ≤ j ≤ k1, ĥ−α(σk2(a), σj−1(a)) >

0, k1 + 1 ≤ j ≤ k2, and ν(σj(a)) > 0, 1 ≤ j ≤ k2.

On the other hand, we have

(Ca∇α
(q,h)x)(t2)− (Ca∇α

(q,h)x)(t1) = −γ(x(t2)) + γ(x(t1)) ≤ 0,

which is a contradiction. So, we have (∇(q,h)x)(t) < 0 for t ∈ T̃σ(a)(q,h). The proof is

complete.

Lemma 3.3. Assume x(a) > 0. Then the solution of equation (3.3) is positive on T̃a(q,h).

Proof. According to Lemma 3.2, we can see that (∇(q,h)x)(t) < 0 leads to

(Ca∇α
(q,h)x)(t) < 0, α ∈ (0, 1], t ∈ T̃σ(a)(q,h).

So, by equation (3.3) and the monotonicity of the function γ, we have x(t) > 0 for

t ∈ T̃a(q,h). The proof is complete.
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Lemma 3.4. Assume x(t) is a solution of equation (3.3), and x(a) > 0. Then the solution

of equation (3.3) has a limit and

lim
t→∞

x(t) = 0, t ∈ T̃a(q,h).

Proof. From Lemmas 3.2, 3.3, we can see the limit exists. Arguing by contradiction, we

assume limt→∞ x(t) = c > 0 for t ∈ T̃a(q,h). For α ∈ (0, 1], taking the operator a∇−α(q,h) on

both side of equation (3.3), and using (2.5), we have

x(t)− x(a) = −(a∇−α(q,h)γ)(x(t))

= −
∫ t

a

ĥα−1(t, ρ(τ))γ(x(τ))∇τ

t=σk(a)
======

k≥1
−

k∑
j=1

ĥα−1(σ
k(a), σj−1(a))γ(x(σj(a)))ν(σj(a))

≤ −γ(x(σk(a)))
k∑
j=1

ĥα−1(σ
k(a), σj−1(a))ν(σj(a))

= −γ(x(σk(a)))ĥα(σk(a), a),

where we used ĥα−1(σ
k(a), σj−1(a)) > 0, ν(σj(a)) > 0, 1 ≤ j ≤ k. Due to the fact that

lim
t→∞

(x(t)− x(a)) = c− x(a) < 0,

while

lim
k→∞
−γ(x(σk(a)))ĥα(σk(a), a) = −∞,

because of the fact that

lim
k→∞

γ(x(σk(a)))ĥα(σk(a), a)

= γ(c) lim
k→∞

([σk(a)]− [a])
(α)
q̃

Γq̃(α + 1)

= γ(c) lim
k→∞

[σk(a)]α(q̃k, q̃)∞
Γq̃(α + 1)(q̃k+α, q̃)∞

= γ(c) lim
k→∞

q̃−kα(a+ hq̃
1−q̃ )

α

Γq̃(α + 1)

∏∞
i=0(1− q̃k+i)∏∞

i=0(1− q̃k+α+i)

= γ(c) lim
k→∞

q̃−kα(a+ hq̃
1−q̃ )

α

Γq̃(α + 1)

(1− q̃α) · · · (1− q̃k+α−1)
(1− q̃) · · · (1− q̃k−1)

∏∞
i=0(1− q̃1+i)∏∞
i=0(1− q̃α+i)
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= γ(c) lim
k→∞

q̃−kα(a+ hq̃
1−q̃ )

α

Γq̃(α + 1)

(1− q̃α) · · · (1− q̃k+α−1)
(1− q̃) · · · (1− q̃k−1)

Γq̃(α)

(1− q̃)1−α
=∞,

where we used limk→∞ q̃
−kα =∞, and

lim
k→∞

(1− q̃α) · · · (1− q̃k+α−1)
(1− q̃) · · · (1− q̃k−1)

=

∏∞
i=0(1− q̃α+i)∏∞
i=0(1− q̃1+i)

=
(q̃α, q̃)

(q̃, q̃)
=

(1− q̃)1−α

Γq̃(α)
.

This yields a contradiction. So, we have

lim
t→∞

x(t) = 0, t ∈ T̃a(q,h).

The proof is complete.

Lemma 3.5. Assume x(t), y(t) satisfy

(Ca∇α
(q,h)x)(t) ≤ −γ(x(t)), t ∈ T̃σ(a)(q,h),

and

(Ca∇α
(q,h)y)(t) ≥ −γ(y(t)), t ∈ T̃σ(a)(q,h).

If x(a) ≤ y(a), then x(t) ≤ y(t) for t ∈ T̃a(q,h).

Proof. We assume that there exists a first point t1 such that x(t1) > y(t1), and x(t) ≤ y(t)

on [a, ρ(t1)] ∩ T̃a(q,h), t1 ∈ T̃σ(a)(q,h). For α = 1, we have

(Ca∇α
(q,h)x)(t1)− (Ca∇α

(q,h)y)(t1) = (∇(q,h)x)(t1)− (∇(q,h)y)(t1) > 0.

For α ∈ (0, 1), using Definition 2.3, we have

(Ca∇α
(q,h)x)(t1)− (Ca∇α

(q,h)y)(t1)

=

∫ t1

a

ĥ−α(t1, ρ(τ))∇(q,h)(x(τ)− y(τ))∇τ

= ĥ−α(t1, τ)(x(τ)− y(τ))|t1τ=a +

∫ t1

a

ĥ−α−1(t1, ρ(τ))(x(τ)− y(τ))∇τ

t1=σk1 (a)
=======

k1≥1
−ĥ−α(σk1(a), a)(x(a)− y(a))

+ ĥ−α−1(σ
k1(a), σk1−1(a))(x(σk1(a))− y(σk1(a)))ν(σk1(a))

+

k1−1∑
j=1

ĥ−α−1(σ
k1(a), σj−1(a))(x(σj(a))− y(σj(a)))ν(σj(a)) > 0,
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where ĥ−α(σk1(a), a) > 0, ĥ−α−1(σ
k1(a), σk1−1(a)) > 0, ĥ−α−1(σ

k1(a), σj−1(a)) < 0, 1 ≤

j ≤ k1 − 1, and ν(σj(a)) > 0, 1 ≤ j ≤ k1.

On the other hand, we have

(Ca∇α
(q,h)x)(t1)− (Ca∇α

(q,h)y)(t1) ≤ −γ(x(t1)) + γ(y(t1)) < 0,

which is a contradiction. So, we have x(t) ≤ y(t) for t ∈ T̃a(q,h). The proof is complete.

Theorem 3.1. Assume x = 0 is an equilibrium point of equation (3.1). If there exists a

positive definite and decrescent scalar function V (t, x), and class-K functions γ1, γ2, and

γ3 such that

γ1(‖x(t)‖) ≤ V (t, x(t)) ≤ γ2(‖x(t)‖), t ∈ T̃a(q,h), (3.4)

and

(Ca∇α
(q,h)V )(t, x(t)) ≤ −γ3(‖x(t)‖), t ∈ T̃σ(a)(q,h). (3.5)

Then equation (3.1) is asymptotically stable.

Proof. From the inequalities (3.4), (3.5), we have

(Ca∇α
(q,h)V )(t, x(t)) ≤ −γ3(γ−12 (V (t, x(t)))), t ∈ T̃σ(a)(q,h).

Consider the fractional difference equation

(Ca∇α
(q,h)U)(t, x(t)) = −γ3(γ−12 (U(t, x(t)))), t ∈ T̃σ(a)(q,h),

when V (a, x(a)) ≤ U(a, x(a)). By Lemma 3.5, we have V (t, x(t)) ≤ U(t, x(t)), t ∈ T̃a(q,h).

According to Lemma 3.2, we obtain U(t, x(t)) ≤ U(a, x(a)), t ∈ T̃a(q,h). Using (3.4), we

get ‖x(t)‖ ≤ γ−11 (V (t, x(t))). So, we have ‖x(t)‖ ≤ γ−11 (U(a, x(a))). Then, it follows from

the definition of stability that equation (3.1) is stable. Furthermore, from Lemma 3.4,

we have limt→∞ V (t, x(t)) = 0. Since γ1 ∈ K, and the fact that γ1(‖x(t)‖) ≤ V (t, x(t)),

we have limt→∞ x(t) = 0. Hence, equation (3.1) is asymptotically stable. The proof is

complete.

In what follows, we will present results concerning the Riemann-Liouville nabla (q, h)-

fractional difference, which are important to prove the stability of equation (3.2).
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Lemma 3.6. Assume that (a∇α
(q,h)x)(t) ≥ (a∇α

(q,h)y)(t), t ∈ T̃σ
2(a)

(q,h) , x(σ(a)) ≥ y(σ(a)),

and α ∈ (0, 1]. Then we have x(t) ≥ y(t) for t ∈ T̃σ(a)(q,h).

Proof. Let F (t) := x(t)− y(t). For α = 1, we have

(a∇α
(q,h)F )(t) = (∇(q,h)F )(t) ≥ 0,

it is easy to see x(t) ≥ y(t) for t ∈ T̃σ(a)(q,h).

For α ∈ (0, 1), since (a∇α
(q,h)x)(t) ≥ (a∇α

(q,h)y)(t), we have

(a∇α
(q,h)F )(t) ≥ 0,

which can be written as ∫ t

a

ĥ−α−1(t, ρ(τ))F (τ)∇τ ≥ 0.

Letting t = σk(a), k ≥ 2, we have

k∑
j=1

ĥ−α−1(σ
k(a), σj−1(a))F (σj(a))ν(σj(a)) ≥ 0.

Since ĥ−α−1(σ
k(a), σk−1(a)) > 0, ĥ−α−1(σ

k(a), σj−1(a)) < 0, 1 ≤ j ≤ k − 1, ν(σj(a)) > 0,

1 ≤ j ≤ k, and x(σ(a)) ≥ y(σ(a)) are true. When k = 2, we have x(σ2(a)) ≥ y(σ2(a)).

Suppose F (σj(a)) ≥ 0, 1 ≤ j ≤ k − 1, by strong induction, we obtain F (t) ≥ 0, that is,

x(t) ≥ y(t) for t ∈ T̃σ(a)(q,h). The proof is complete.

Consider the following fractional difference equation

(a∇α
(q,h)x)(t) = −γ(x(t)), x(σ(a)) = x0, α ∈ (0, 1], t ∈ T̃σ

2(a)
(q,h) , (3.6)

where γ ∈ K and x(t) is a positive definite and decrescent function. We can easily show

this equation has a unique solution.

Lemma 3.7. Assume x(σ(a)) > 0. Then the solution of equation (3.6) is positive on

T̃σ(a)(q,h).

Proof. In order to show x(t) > 0 for t ∈ T̃σ(a)(q,h). Arguing by contradiction, we assume

that there exists a first point t1 = σk1(a), k1 ≥ 2 such that x(t1) ≤ 0, and x(t) > 0 on

[a, ρ(t1)] ∩ T̃σ(a)(q,h). For α = 1, and t = t1, the equation (3.6) can be written as

(∇(q,h)x)(t1) = −γ(x(t1)), (3.7)
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we can see easily the L.H.S. of equation (3.7) is negative, while the R.H.S. of equation

(3.7) is nonnegative, which is a contradiction.

For α ∈ (0, 1), and t = t1, the equation (3.6) can be written as∫ t1

a

ĥ−α−1(t1, ρ(τ))x(τ)∇τ = −γ(x(t1)). (3.8)

Taking t1 = σk1(a), k1 ≥ 2 in (3.8), we have

k1∑
j=1

ĥ−α−1(σ
k1(a), σj−1(a))x(σj(a))ν(σj(a)) = −γ(x(σk1(a))), (3.9)

that is,

k1−1∑
j=1

ĥ−α−1(σ
k1(a), σj−1(a))x(σj(a))ν(σj(a))

= −ĥ−α−1(σk1(a), σk1−1(a))x(σk1(a))ν(σk1(a))− γ(x(σk1(a))).

(3.10)

Since ĥ−α−1(σ
k1(a), σj−1(a)) < 0, 1 ≤ j ≤ k1 − 1, ĥ−α−1(σ

k1(a), σk1−1(a)) > 0, and

ν(σj(a)) > 0, 1 ≤ j ≤ k1, we can obtain the L.H.S. of equation (3.10) is negative, while

the R.H.S. of equation (3.10) is nonnegative, which is a contradiction. Thus, we conclude

x(t) > 0 for t ∈ T̃σ(a)(q,h). The proof is complete.

Lemma 3.8. Assume x(t) is a solution of equation (3.6), and x(σ(a)) > 0. Then the

solution of equation (3.6) has a limit and

lim
t→∞

x(t) = 0, t ∈ T̃σ(a)(q,h).

Proof. For α = 1, the equation (3.6) can be written as

(∇(q,h)x)(t) = −γ(x(t)),

so, by taking t = σk(a), we obtain

x(σk(a))− x(σ(a)) = −ν(σk(a))γ(x(σk(a)))− q̃ν(σk(a))γ(x(σk−1(a)))− · · ·

− q̃k−2ν(σk(a))γ(x(σ2(a)))

≤ −(1 + q̃ + · · ·+ q̃k−2)ν(σk(a))γ(x(σk(a)))

= −1− q̃k−1

1− q̃
[aqk−1(q − 1) + qk−1h]γ(x(σk(a)))
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= −
[
aq(qk−1 − 1) + qh

qk−1 − 1

q − 1

]
γ(x(σk(a)))

= −
(
a+

h

q − 1

)
q(qk−1 − 1)γ(x(σk(a))).

Due to the fact that x(t) is positive and decreasing, so limt→∞ x(t) exists. Assume

limt→∞ x(t) = c > 0 for t ∈ T̃σ
2(a)

(q,h) , we have

lim
k→∞

(x(σk(a))− x(σ(a))) = c− x(σ(a)) < 0,

while

lim
k→∞

[
−
(
a+

h

q − 1

)
q(qk−1 − 1)γ(x(σk(a)))

]
= −∞.

This yields a contradiction. So, we have

lim
t→∞

x(t) = 0, t ∈ T̃σ(a)(q,h).

For α ∈ (0, 1), applying the operator σ(a)∇−α(q,h) to both sides of equation (3.6), we

obtain

(σ(a)∇−α(q,h)(a∇
α
(q,h)x))(t) = −(σ(a)∇−α(q,h)γ)(x(t)).

Using (2.6), we get

x(t)− x(σ(a))ĥα−1(t, a)[σ(a)]1−α(1− q̃)1−α = −σ(a)∇−α(q,h)γ(x(t)).

Since ĥα−1(σ
k(a), σj−1(a)) > 0, ν(σj(a)) > 0, 1 ≤ j ≤ k, we obtain

x(t) = x(σ(a))ĥα−1(t, a)[σ(a)]1−α(1− q̃)1−α

−
∫ t

a

ĥα−1(t, ρ(τ))γ(x(τ))∇τ

t=σk(a)
======

k≥1
x(σ(a))ĥα−1(σ

k(a), a)[σ(a)]1−α(1− q̃)1−α

−
k∑
j=1

ĥα−1(σ
k(a), σj−1(a))γ(x(σj(a)))ν(σj(a))

< x(σ(a))ĥα−1(σ
k(a), a)[σ(a)]1−α(1− q̃)1−α.

Due to the fact that

lim
k→∞

ĥα−1(σ
k(a), a) = lim

k→∞

([σk(a)]− [a])
(α−1)
q̃

Γq̃(α)
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= lim
k→∞

[σk(a)]α−1(q̃k, q̃)∞
Γq̃(α)(q̃k+α−1, q̃)∞

= lim
k→∞

q̃k(1−α)(a+ hq̃
1−q̃ )

α−1

Γq̃(α)

∏∞
i=0(1− q̃k+i)∏∞

i=0(1− q̃k+α−1+i)

= lim
k→∞

q̃k(1−α)(a+ hq̃
1−q̃ )

α−1

Γq̃(α)

(1− q̃α) · · · (1− q̃k+α−2)
(1− q̃) · · · (1− q̃k−1)

∏∞
i=0(1− q̃1+i)∏∞
i=0(1− q̃α+i)

= lim
k→∞

q̃k(1−α)(a+ hq̃
1−q̃ )

α−1

Γq̃(α)

(1− q̃α) · · · (1− q̃k+α−2)
(1− q̃) · · · (1− q̃k−1)

Γq̃(α)

(1− q̃)1−α
= 0,

where we used limk→∞ q̃
k(1−α) = 0, and

lim
k→∞

(1− q̃α) · · · (1− q̃k+α−2)
(1− q̃) · · · (1− q̃k−1)

=

∏∞
i=0(1− q̃α+i)∏∞
i=0(1− q̃1+i)

=
(q̃α, q̃)

(q̃, q̃)
=

(1− q̃)1−α

Γq̃(α)
.

Thus, we conclude

lim
t→∞

x(t) = 0, t ∈ T̃σ(a)(q,h).

The proof is complete.

Lemma 3.9. Assume x(t), y(t) satisfy

(a∇α
(q,h)x)(t) ≤ −γ(x(t)), t ∈ T̃σ

2(a)
(q,h) ,

and

(a∇α
(q,h)y)(t) ≥ −γ(y(t)), t ∈ T̃σ

2(a)
(q,h) .

If x(σ(a)) ≤ y(σ(a)), then x(t) ≤ y(t) for t ∈ T̃σ(a)(q,h).

Proof. The proof is similar to Lemma 3.5, and so we omit the details.

Theorem 3.2. Assume x = 0 is an equilibrium point of equation (3.2). Assume there

exists a positive definite and decrescent scalar function V (t, x), and class-K functions γ1,

γ2, and γ3 such that

γ1(‖x(t)‖) ≤ V (t, x(t)) ≤ γ2(‖x(t)‖), t ∈ T̃σ(a)(q,h), (3.11)

and

(a∇α
(q,h)V )(t, x(t)) ≤ −γ3(‖x(t)‖), t ∈ T̃σ

2(a)
(q,h) . (3.12)

Then equation (3.2) is asymptotically stable.
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Proof. From the inequalities (3.11), (3.12), we have

(a∇α
(q,h)V )(t, x(t)) ≤ −γ3(γ−12 (V (t, x(t)))), t ∈ T̃σ

2(a)
(q,h) .

Consider the fractional difference equation

(a∇α
(q,h)U)(t, x(t)) = −γ3(γ−12 (U(t, x(t)))), t ∈ T̃σ

2(a)
(q,h) ,

when V (σ(a), x(σ(a))) ≤ U(σ(a), x(σ(a))). By Lemma 3.9, we have V (t, x(t)) ≤ U(t, x(t)),

t ∈ T̃σ(a)(q,h). From the proof of Lemma 3.8, we obtain U(t, x(t)) ≤ U(σ(a), x(σ(a)))ĥα−1(σ
k(a), a)

[σ(a)]1−α(1− q̃)1−α ≤ U(σ(a), x(σ(a)))ĥα−1(σ(a), a)[σ(a)]1−α(1− q̃)1−α, t ∈ T̃σ(a)(q,h). Then,

according to the definition of stability, we conclude that equation (3.2) is stable. Further-

more, from Lemma 3.8, we have limt→∞ V (t, x(t)) = 0. Since γ1 ∈ K, and the fact that

γ1(‖x(t)‖) ≤ V (t, x(t)), we have limt→∞ x(t) = 0. So, equation (3.2) is asymptotically

stable. The proof is complete.

4 Stability analysis of fractional difference equations

In this section, we will introduce some relevant results for the nabla (q, h)-fractional

difference equations. Initially, we will present some new lemmas, which will subsequently

allow us to extend the Lyapunov type results for the nabla (q, h)-fractional difference equa-

tions. Then, the sufficient conditions for stability of the nabla (q, h)-fractional difference

equations are presented.

Lemma 4.1. (See [22, Theorem 2.2]). Assume a, b ≥ 0, and p, q > 1 are such that

1
p

+ 1
q

= 1. Then the following inequality holds

ab ≤ 1

p
ap +

1

q
bq, (4.1)

where equality holds if and only if ap = bq.

Lemma 4.2. Assume α ∈ (0, 1], x ∈ R, t ∈ T̃a(q,h), and β = m
n
≥ 1, where m ∈ {2k, k ∈

N1} and n ∈ N1. Then the following inequality holds

(Ca∇α
(q,h)x

β)(t) ≤ µxβ−1(t)(Ca∇α
(q,h)x)(t), t ∈ T̃σ(a)(q,h). (4.2)
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Proof. For β = 1, the inequality (4.2) is clearly true. For β > 1, we need to equivalently

prove

µxβ−1(t)(Ca∇α
(q,h)x)(t)− (Ca∇α

(q,h)x
β)(t) ≥ 0. (4.3)

For α = 1, we have

βxβ−1(t)(∇(q,h)x)(t)− (∇(q,h)x
β)(t)

= βxβ−1(t)
x(t)− x(ρ(t))

ν(t)
− xβ(t)− xβ(ρ(t))

ν(t)

=
(β − 1)xβ(t)− βxβ−1(t)x(ρ(t)) + xβ(ρ(t))

ν(t)

≥ 0,

where we used the following inequality

xβ−1(t)x(τ) ≤ |xβ−1(t)| · |x(τ)|
(4.1)

≤ β − 1

β
|xβ−1(t)|

β
β−1 +

1

β
|x(τ)|β

=
β − 1

β
xβ(t) +

1

β
xβ(τ), t, τ ∈ T̃a(q,h).

(4.4)

For α ∈ (0, 1), using the integration by parts formula (2.7), we have

βxβ−1(t)(Ca∇α
(q,h)x)(t)− (Ca∇α

(q,h)x
β)(t)

= βxβ−1(t)

∫ t

a

ĥ−α(t, ρ(τ))(∇(q,h)x)(τ)∇τ −
∫ t

a

ĥ−α(t, ρ(τ))(∇(q,h)x
β)(τ)∇τ

= βxβ−1(t)
[
ĥ−α(t, τ)x(τ)|tτ=a +

∫ t

a

ĥ−α−1(t, ρ(τ))x(τ)∇τ
]

−
[
ĥ−α(t, τ)xβ(τ)|tτ=a +

∫ t

a

ĥ−α−1(t, ρ(τ))xβ(τ)∇τ
]

t=σk(a)
======

k≥1
−βĥ−α(σk(a), a)xµ−1(σk(a))x(a) + ĥ−α(σk(a), a)xβ(a)

+ (β − 1)ĥ−α−1(σ
k(a), σk−1(a))xβ(σk(a))ν(σk(a))

+
k−1∑
j=1

ĥ−α−1(σ
k(a), σj−1(a))[βxβ−1(σk(a))x(σj(a))− xβ(σj(a))]ν(σj(a))

(4.4)

≥ −βĥ−α(σk(a), a)xβ−1(σk(a))x(a) + ĥ−α(σk(a), a)xβ(a)

+ (β − 1)xβ(σk(a))
k∑
j=1

ĥ−α−1(σ
k(a), σj−1(a))ν(σj(a))
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= ĥ−α(σk(a), a)(−µxµ−1(σk(a))x(a) + xβ(a))

+ (β − 1)ĥ−α(σk(a), a)xβ(σk(a))
(4.4)

≥ 0,

where ĥ−α(σk(a), a) > 0, ĥ−α−1(σ
k(a), σj−1(a)) < 0, 1 ≤ j ≤ k − 1, and ν(σj(a)) > 0,

1 ≤ j ≤ k. The proof is complete.

Corollary 4.1. Assume α ∈ (0, 1], x(t) ≥ 0, t ∈ T̃a(q,h), and n ∈ {2k + 1, k ∈ N1}. Then

the following inequality holds

(Ca∇α
(q,h)x

n)(t) ≤ nxn−1(t)(Ca∇α
(q,h)x)(t), t ∈ T̃σ(a)(q,h). (4.5)

Corollary 4.2. Assume α ∈ (0, 1], and m ∈ N1. Then the following inequality holds

(Ca∇α
(q,h)x

2m)(t) ≤ 2mx(2
m−1)(t)(Ca∇α

(q,h)x)(t), t ∈ T̃σ(a)(q,h). (4.6)

Theorem 4.1. Assume x = 0 is an equilibrium point of equation (3.1). Then, for

β = m
n
≥ 1, where m ∈ {2k, k ∈ N1} and n ∈ N1, if the following condition is satisfied

xβ−1(t)f(t, x(t)) ≤ 0, t ∈ T̃σ(a)(q,h),

then equation (3.1) is stable. Also, if

xβ−1(t)f(t, x(t)) < 0, t ∈ T̃σ(a)(q,h), ∀ x 6= 0,

then equation (3.1) is asymptotically stable.

Proof. Let us consider the following Lyapunov function, which is positive definite:

V (t) =
xβ(t)

β
.

Using Lemma 4.2 gives us

(Ca∇α
(q,h)V )(t) ≤ xβ−1(t)(Ca∇α

(q,h)x)(t) = xβ−1(t)f(t, x(t)) ≤ 0.

Hence, by Lemma 3.1, we have

V (t, x(t)) ≤ V (a, x(a)), t ∈ T̃a(q,h),
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that is,
xβ(t)

β
≤ xβ(a)

β
.

According to the definition of stability in the sense of Lyapunov, we obtain equation (3.1)

is stable in the sense of Lyapunov.

If

xβ−1(t)f(t, x(t)) < 0, t ∈ T̃σ(a)(q,h), ∀ x 6= 0,

similar to the above step, we can show equation (3.1) is stable. Then, according to Lemma

4.2, we have (Ca∇α
(q,h)V )(t) ≤ xβ−1(t)(Ca∇α

(q,h)x)(t) < 0, that is, the fractional order (q, h)-

difference of V is negative definite. According to Theorem 3.1 and the relationship between

positive definite functions and class-K functions in [23]. We obtain that equation (3.1) is

asymptotically stable. The proof is complete.

Lemma 4.3. Assume α ∈ (0, 1], x ∈ R, t ∈ T̃σ(a)(q,h), and β = m
n
≥ 1, where m ∈ {2k, k ∈

N1} and n ∈ N1. Then the following inequality holds

(a∇α
(q,h)x

β)(t) ≤ βxβ−1(t)(a∇α
(q,h)x)(t), t ∈ T̃σ(a)(q,h). (4.7)

Proof. For β = 1, the inequality (4.7) is clearly true. For β > 1, we need to equivalently

prove

βxβ−1(t)(a∇α
(q,h)x)(t)− (a∇α

(q,h)x
β)(t) ≥ 0. (4.8)

For α = 1, the proof of this result is similar to the proof of Lemma 4.2. For α ∈ (0, 1),

using Lemma 2.1, we have

βxβ−1(t)(a∇α
(q,h)x)(t)− (a∇α

(q,h)x
β)(t)

= βxβ−1(t)

∫ t

a

ĥ−α−1(t, ρ(τ))x(τ)∇τ −
∫ t

a

ĥ−α−1(t, ρ(τ))xβ(τ)∇τ

t=σk(a)
======

k≥1
(β − 1)ĥ−ν−1(σ

k(a), σk−1(a))xβ(σk(a))ν(σk(a))

+
k−1∑
j=1

ĥ−α−1(σ
k(a), σj−1(a))

[
βxβ−1(σk(a))x(σj(a))− xβ(σj(a))

]
ν(σj(a))

(4.4)

≥ (β − 1)xβ(σk(a))
k∑
j=1

ĥ−α−1(σ
k(a), σj−1(a))ν(σj(a))

= (β − 1)xβ(σk(a))ĥ−α(σk(a), a)
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≥ 0,

where ĥ−α(σk(a), a) > 0, ĥ−α−1(σ
k(a), σj−1(a)) < 0, 1 ≤ j ≤ k − 1, and ν(σj(a)) > 0,

1 ≤ j ≤ k. The proof is complete.

Corollary 4.3. Assume α ∈ (0, 1], x(t) ≥ 0, t ∈ T̃σ(a)(q,h), and n ∈ {2k + 1, k ∈ N1}. Then

the following inequality holds

(a∇α
(q,h)x

n)(t) ≤ nxn−1(t)(a∇α
(q,h)x)(t), t ∈ T̃σ(a)(q,h). (4.9)

Corollary 4.4. Assume α ∈ (0, 1], and m ∈ N1. Then the following inequality holds

(a∇α
(q,h)x

2m)(t) ≤ 2mx(2
m−1)(t)(a∇α

(q,h)x)(t), t ∈ T̃σ(a)(q,h). (4.10)

Theorem 4.2. Assume x = 0 is an equilibrium point of equation (3.2). Then, for

β = m
n
≥ 1, where m ∈ {2k, k ∈ N1} and n ∈ N1, if the following condition is satisfied

xβ−1(t)f(t, x(t)) ≤ 0, t ∈ T̃σ
2(a)

(q,h) ,

then equation (3.2) is stable. Also, if

xβ−1(t)f(t, x(t)) < 0, t ∈ T̃σ
2(a)

(q,h) , ∀ x 6= 0,

then equation (3.2) is asymptotically stable.

Proof. Let us consider the following Lyapunov function, which is positive definite:

V (t) =
xβ(t)

β
.

Using Lemma 4.3 gives us

(a∇α
(q,h)V )(t) ≤ xβ−1(t)(a∇α

(q,h)x)(t) = xβ−1(t)f(t, x(t)) ≤ 0.

By Lemma 3.6, we have

V (t, x(t)) ≤ V (σ(a), x(σ(a))), t ∈ T̃σ(a)(q,h),

that is,
xβ(t)

β
≤ xβ(σ(a))

β
.
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According to the definition of stability in the sense of Lyapunov, we obtain equation (3.2)

is stable in the sense of Lyapunov.

If

xβ−1(t)f(t, x(t)) < 0, t ∈ T̃σ
2(a)

(q,h) , ∀ x 6= 0,

similar to the above step, we can show equation (3.2) is stable. Then, using Lemma 4.3, we

have (a∇α
(q,h)V )(t) ≤ xβ−1(t)(a∇α

(q,h)x)(t) < 0, that is, the fractional order (q, h)-difference

of V is negative definite. Using Theorem 3.2 and the relationship between positive definite

functions and class-K functions in [23]. We conclude that equation (3.2) is asymptotically

stable. The proof is complete.

Remark 4.1. If x(t) ≥ 0, then the power rules in Lemmas 4.2 and 4.3 hold for β ≥ 1. In

particular, the assumption β = m
n

(m ∈ {2k, k ∈ N1} and n ∈ N1) is no longer required.

5 Numerical Results

Now, we give some numerical examples to illustrate the application of the results

established in the previous sections.

Example 5.1. Consider the following nabla (q, h)-fractional difference equation

(Ca∇α
(q,h)x)(t) = −x3(t), x(0) = 0.4, (5.1)

where α = 0.9, a = 0, q = h = 1, x ∈ R, t ∈ T̃σ(a)(q,h), and this difference equation has the

trivial solution x(t) = 0.

We can see that

xβ−1(t)(Ca∇α
(q,h)x)(t) = xβ−1(t)(−x3(t))

= −x
12
5 (t) ≤ 0

for β = 2
5
. Thus, from Theorem 4.1, equation (5.1) is stable, as it can be seen from Figure

5.1.

Example 5.2. Consider the following nabla (q, h)-fractional difference equation

(a∇α
(q,h)x)(t) = −x3(t), x(1) = 0.4, (5.2)
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Figure 5.1: Stability of x for α = 0.9.

where α = 0.9, a = 0, q = h = 1, x ∈ R, t ∈ T̃σ
2(a)

(q,h) , and this difference equation has the

trivial solution x(t) = 0.

We can see that

xβ−1(t)(a∇α
(q,h)x)(t) = xβ−1(t)(−x3(t))

= −x
12
5 (t) ≤ 0

for β = 2
5
. Thus, from Theorem 4.2, equation (5.2) is stable, as can be seen from Figure

5.2.
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Figure 5.2: Stability of x for α = 0.9.
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6 Conclusion

This paper gives stability theorems for discrete fractional Lyapunov direct method for

the special nabla (q, h)-fractional difference equations. Furthermore, some new lemmas are

presented that allows establishing a broader family of Lyapunov functions to determine the

stability of the nabla (q, h)-fractional difference equations. As a result, we give sufficient

conditions for these equations to be stable or asymptotically stable. In addition, some

examples are given to show the established results.
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[15] J. Čermák, K. Tomáš, L. Nechvátal, Discrete Mittag-Leffler functions in lin-

ear fractional difference equations, Abstr. Appl. Anal. 2011 (2011), 1-21. DOI:

10.1155/2011/565067

[16] M. R. Segi Rahmat, M. S. Md Noorani, Caputo type fractional difference operator

and its application on discrete time scales, Adv. Difference Equ. 2015 (2015), no.

160, 1-15. DOI: 10.1186/s13662-015-0496-5

27



[17] F. F. Du, B. G. Jia, L. Erbe, A. C. Peterson, Monotonicity and convexity for nabla

fractional (q, h)-differences, J. Difference Equ. Appl. 22 (2016), no. 9, 1124-1243.

DOI: 10.1080/10236198.2016.1188089

[18] F. F. Du, L. Erbe, B. G. Jia, A. C. Peterson, Two asymptotic results of solutions

for Nabla fractional (q, h)-difference equations, Turkish J. Math. 42 (2018), no. 5,

2214-2242.

[19] B. G. Jia, S. Y. Chen, L. Erbe, A. Peterson, Liapunov functional and stability of

linear nabla (q, h)-fractional difference equations, J. Difference Equ. Appl. (2017),

1-12. DOI: 10.1080/10236198.2017.1380634

[20] M. R. Segi Rahmat, The (q, h)-Laplace transform on discrete time scales, Comput.

Math. Appl. 62 (2011), 272-281.

[21] F. Jarad, T. Abdeljawad, D. Baleanu, K. Biçen, On the stability of some dis-
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