Comparison of bactericidal and fungicidal efficacy of antiseptic formulations according to EN 13727 and EN 13624 standards

Abstract

Background/aim: In this study, the antibacterial and antifungal properties of the five most commonly used antiseptic formulations were evaluated in terms of different contact times and organic conditions.

Materials and methods: Solutions of chlorhexidine digluconate, povidone iodine, isopropyl alcohol, hydrogen peroxide and tincture of iodine was prepared and tested according to European Standards EN 13727 and EN 13624 with different parameters.

Results: The results showed isopropyl alcohol 70% v/v and tincture of iodine 2% had a greater bactericidal and fungicidal activity against the four tested bacteria and two fungi in all conditions.

Conclusion: When the results of five different active substances were quantitatively evaluated in regards of their bactericidal and fungicidal activities, it was found that contact time and organic load significantly affect the antiseptic efficacy.

Key words: Antiseptic solutions, Microbial efficacy, EN 13727, EN 13624, Medical use
1. **Introduction**

Antiseptics are defined as substances or preparations that enable the treatment of living tissues by killing or inhibiting microorganisms in order to prevent or limit the risk of infection. In order to carry out their purpose, these products include active substances such as quaternary ammonia, chlorhexidine, alcohols, oxidants and organic acids. The purpose of these substances are to control the skin and mucocutaneous microbial colonization on the skin and wound surface [1]. Five antiseptic formulations that are commonly used for antisepsis are Chlorhexidine digluconate (CHX) solution, Povidone-iodine (PVP-I) solution, Isopropyl alcohol (IPA) 70% v/v, Hydrogen peroxide (HP) (3%) solution and Tincture of iodine (TI) (2 %) solution. As for the areas of use, CHX solution (2%) is an antiseptic formulation that can be used for skin and hand disinfection. PVP-I is a chemical complex of polyvinylpyrrolidone and elemental iodine used as disinfectant in various pharmaceutical formulations, whereas IPA can be used as hand and equipment disinfection. HP is an antiseptic that can be used to prevent infections of minor cuts, scrapes, burns of skin, sores and gingivitis of the oral cavity and tincture of iodine solution is also known as the weak iodine solution is an antiseptic used for patient preoperative skin preparation and helps to reduce bacteria that can potentially cause skin infections [1,2]. In this study, the antibacterial and antifungal properties of the five most commonly used above-mentioned antiseptic solutions were evaluated in terms of different contact times and organic conditions. In this context, it was aimed to prepare solutions of CHX, PVP-I, IPA, HP and TI and to compare their bactericidal and fungicidal activity according to European Standards EN 13727[3] and EN 13624[4]. Four bacterial and two fungal strains were used to assess the effectiveness of each antiseptic formulation. These test strains were *Escherichia coli K12*, *Pseudomonas aeruginosa*, *Staphylococcus aeurus*,
Enterococcus hirae, Candida albicans and Aspergillus brasiliensis (formerly known as Aspergillus niger).

2. **Materials and Methods**

2.1. **Media and chemicals**

Chlorhexidine Digluconate 20%, Poly(vinylpyrrolidone) (PVP)–Iodine complex, Sodium phosphate dibasic dehydrate, Citric acid, Ísopropyl, Polysorbate 80, Catalase, Hydrogen Peroxide Bovine serum albumin, and Iodine were obtained from Sigma Aldrich (USA). Malt extract agar (MEA) and Tryptic Soy Agar (TSA) were purchased from Oxoid (UK). Maximum Recovery Diluent, Lecithin and Defibrinated Sheep Blood were obtained from Merck, Alfa Aesar and ThermoFisher scientific respectively.

2.2. **Preparation of Antiseptic Solutions**

Five solutions namely Chlorhexidine digluconate solution 2% (CHX 2%), Povidone-iodine solution 7.5% (7.5% PVP-I), Isopropyl alcohol 70% (70% IPA), 3% Hydrogen Peroxide (3% H$_2$O$_2$) and 2% Tincture of Iodine (2% TI) were used as antiseptic solutions. Each solution was formulated as follows.

- **Formulation A:** CHX 2% was prepared by mixing 100 ml Chlorhexidine Digluconate 20% with 900 ml distilled water.

- **Formulation B:** PVP-I 7.5% was prepared by adding 7.5 g PVP-Iodine 30/06 to 80 ml citric acid-phosphate buffer solution (pH 5.0). The mixture was homogenized by a magnetic mixer (Hanna, Italy) at room temperature for 5 minutes. After that, the volume of solution was completed to 100 ml with citric acid-phosphate buffer solution.
- Formulation C: 70% IPA was obtained by mixing 700 ml isopropyl alcohol with 300 ml distilled water.

- Formulation D: 3% H₂O₂ was prepared by adding 10 ml 30% Hydrogen Peroxide to 90 ml distilled water.

- Formulation E: 2% TI was prepared by mixing 2% iodine and 2.5% potassium iodide in 50 ml 90% ethanol. The volume of the mixture was completed to 100 ml with distilled water.

2.3. **Neutralizers and interfering substance**

In order to limit the contact time of antiseptic, the active substances constituting the antiseptic solutions were neutralized by specific substances. Neutralizer compositions were prepared according to EN 13727 and 13624 standards [3,4] as shown in Table 1. Organic load is an important factor reducing the effectiveness of disinfectants. Therefore, according to the application area of the disinfectant, Bovine Serum Albumin (BSA) and Defibrinated Sheep Blood were used as interfering agents. The dirty condition was performed with a mixture of 3.0 g/L BSA and 0.3% Defibrinated Sheep Blood, while 0.3 g/L BSA were employed in the clean condition.

Table 1. Neutralizer compositions

2.4. **Microorganisms and growth conditions**

The antimicrobial effects of the antiseptic solutions were evaluated on four bacterial strains and two fungi. The bactericidal tests were performed with *Staphylococcus aureus* ATCC 6538, *Escherichia coli* K12 NCTC 10538, *Pseudomonas aeruginosa* ATCC 15442
and *Enterococcus hirae* ATCC 10541, and *Candida albicans* ATCC 10231 and
Aspergillus brasiliensis ATCC 16404 were used for fungicidal tests.

Before antimicrobial tests, microorganisms were grown on specific media. All strains of
bacteria from stock solutions were incubated on Tryptic Soy Agar (TSA) at 37°C for 24
hours. After that, the resulting colonies were again inoculated on TSA in the same
conditions. *Candida albicans* ATCC 10231 was grown on Malt Extract Agar (MEA) as
mentioned above. *Aspergillus brasiliensis* ATCC 16404 suspension was prepared with
the resuspension of lyophilized Bioball (BioMérieux, France).

2.5. Antimicrobial Testing

Bactericidal and fungicidal efficacy tests were performed according to EN 13727
and EN 13624, respectively [3,4]. The antimicrobial tests were carried out at 20°C by
using water bath (Nüve, Turkey). Concentrations of bacterial and yeast test suspensions
were adjusted to 1.0 Mcfarland standard with Densitometer (Biosan, Latvia). Lyophilized
culture Bioball (Biomerioux) was used for *Aspergillus brasiliensis* spore suspension. One
mL of each microorganism suspension was mixed with an equivalent volume of
interfering substance in sterile tubes for 2 minutes. Afterwards, 8 mL of disinfectant were
added to tubes without mixing. Then, the tubes were kept at 20 °C for 1 and 5 minutes.
At the end of contact time, 1 mL of the mixture was transferred to a new tube containing
8 mL neutralizer and 1 mL sterile distilled water. The tubes were mixed by vortex for 10
seconds. After the neutralization process, the living microorganisms were enumerated by
the pour plate technique. Inoculated petri dishes were incubated at 37°C for bacteria and
30°C for fungi for 48 hours. Calculations were made by subtraction of logarithmic values
of control and test results. Efficacy limit of antiseptics is 4 log for fungi and 5 log for
bacteria according to EN 13624 and 13727 standards respectively. All studies were performed in duplicates.

3. RESULTS AND DISCUSSION

The antimicrobial activity of the five antiseptic solutions in terms of their active substances tested under different contact times and organic conditions are given in Table 2. Toxic effect of neutralizers and interfering substances and effectiveness of neutralization process also have been validated according to the EN 13727 and EN 13624 standards [3,4].

Table 2. Bactericidal and fungicidal activity of tested formulations.

The results of the antimicrobial efficacy tests were evaluated according to the logarithmic limits given in the standards. Formulations not showing 5 log reduction for bacteria and 4 log reduction for fungi were considered to be ineffective. The results showed that the Formulation D - HP 3% v/v had no bactericidal and fungicidal activity in the defined conditions, especially in dirty condition, microbial activity of this antiseptic solution was determined to be very low. The Formulation C - IPA 70% v/v and Formulation E - Tincture of Iodine 2% had a greater bactericidal and fungicidal activity against the four tested bacteria and two fungi in all conditions. Formulation A - CHX 2% and Formulation B - PVP-I 7.5% had no fungicidal activity against A.brasiliensis in both dirty and clean conditions. Antiseptic solutions, with different biocidal agents that are used in hand disinfection, mucous membranes and wound surfaces are used to reduce the risk of bacterial contamination in medical areas and to prevent cutaneous and mucocutaneous infections. Although an antiseptic solution has high antimicrobial effects, it should not be irritant due to its use on skin and on the wound surfaces[5]. This limits the types of active
substances that can be used in antiseptic formulations. The antiseptic solutions used in
the medical field generally include one of the active substances; CHX, alcohol, benzalkonium chloride, iodine solutions, hydrogen peroxide or thereof any suitable combinations. The effect mechanisms of active substances used as antimicrobial agents on microorganisms show variations. Some active substances disrupt the integrity of the cell wall or cell membrane, inhibit the intracellular transfer of substances, while some of them degrade the enzymes, and some inhibit the transcription and translation mechanisms by disrupting the structure of the DNA or RNA. In this study, five different formulations were prepared from the most commonly used active agents in commercial antiseptic solutions. Bactericidal and fungicidal activities of these formulations were compared by using the phase 2 step 1 in vitro test methods EN 13727 [3] and EN 13624 [4]. These studies purpose is to determine the bactericidal and fungicidal activity of the disinfectant and antiseptic solutions under practical conditions with respect to its intended use. The experiment was carried out using different time and interfering substance conditions. Thus, the effect of contact time and organic challenge on the microbial activity of the active substances were also observed. The formulation C has demonstrated a homogeneous result regardless of the time and interfering substance conditions. It has provided the desired logarithmic reduction in all conditions on four bacterial and two fungal strains tested. IPA shows fast and broad-spectrum antimicrobial activity against vegetative bacteria (including mycobacteria), some viruses and fungi. Although it is known to inhibit sporulation and spore germination, it is not sporicidal. The antimicrobial activity of IPA is quite low at concentrations below 50%. Specific mode of action of IPA is to cause membrane damage and rapid denaturation of proteins [2]. CHX showed lower microbial activity in the dirty condition where the organic load is high and had no
fungicidal activity against spores of A. brasiliensis mold in any tested conditions. CHX is the most widely used biocidal agent in antiseptic solutions, in particular in hand washing and oral solutions due to its good bactericidal efficacy and low irritation. The intake of CHX to bacteria and yeast cells has been shown to be extremely rapid. CHX produces damage to the outer cell layers but is insufficient to induce lysis or cell death. The substance then attacks the bacterial cytoplasmic or inner membrane or the yeast plasma membrane. CHX in high concentrations causes coagulation of components within the cell. It is a disadvantage that CHX activity is pH dependent and decreases in organic presence [6]. The PVP-I results were similar to CHX, but the contact time greatly influenced the efficacy of this formulation. Increased contact time also increased PVP-I efficiency. PVP-I is a complex of iodine and polyvinylpyrrolidone. Povidone is a polymer that does not have antimicrobial activity, but allows the transport of iodine from cell membranes. After Iodine passes through the cell wall of microorganisms, it forms complexes with amino acids and unsaturated fatty acids, resulting in inhibition of protein synthesis and degradation of the cell membrane. The antimicrobial efficacy of PVP-I is influenced by temperature, contact time, the presence and type of organic and inorganic compounds, and pH [7]. The Formulation D did not achieve the desired logarithmic reduction in the standards under the conditions tested. It has been observed that the efficacy on the catalase positive organisms is very low due to the breakdown of hydrogen peroxide to water and oxygen. Hydrogen peroxide is a commonly used active substance for disinfection and antisepsis since it is a colourless and clear liquid. H₂O₂ acts as an oxidant, producing hydroxyl free radicals that inhibit essential cell components such as lipids, proteins, and DNA. The presence of catalase or peroxidases at low concentrations increase tolerance of organisms. Therefore, higher concentrations of H₂O₂ and longer
contact times are required to achieve the desired antimicrobial activity. The rapid
reduction in the presence of high organic compounds is the disadvantage of this antiseptic
[2]. Due to its ethanol content, tincture of iodine displayed a very high antimicrobial
activity against microorganisms including Aspergillus spores. Although it is a highly
effective antiseptic, its use is limited because its irritant properties.

The combination of contact time – concentration of active substance and organic load in
the environment play an important role in disinfectant efficacy. A healthy skin and wound
mucosa have a significant protein load, which causes partial inactivation of antiseptic
solutions. Especially in infected wounds, antiseptics that do not show sufficient activity
may cause some bacteria to develop resistance. As a result of antiseptic resistance,
bacteria may also gain cross-resistance to some antibiotics.

4. CONCLUSION

When the results of five different active substances were quantitatively evaluated in
regards of their bactericidal and fungicidal activities, it was found that IPA and tincture
of iodine were the most effective and hydrogen peroxide was the least effective. This
study demonstrates that contact time and organic load significantly affect the antiseptic
efficacy.

REFERENCES

cutaneous/mucosal antiseptic solutions in the presence of interfering substances:
Improvement of the NF EN 13727 European Standard? Medecine et Maladies

3. EN 13624:2013. Chemical disinfectants and antiseptics - Quantitative suspension test for the evaluation of fungicidal activity of chemical disinfectants for instruments used in the medical area - Test method and requirements (phase 2, step 1).

Table Legends

Table 1. Neutralizer compositions

Table 2. Bactericidal and fungicidal activity of tested formulations.

Table 1. Neutralizer compositions

<table>
<thead>
<tr>
<th>Active Substance</th>
<th>Neutralizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen peroxide</td>
<td>Polysorbate 80, 50 g/L; Lecithin, 10 g/L; Catalase 0.25 g/L</td>
</tr>
<tr>
<td>Iodine</td>
<td>Sodium Thiosulphate, 15 g/L; Polysorbate 80, 30 g/L; Lecithin, 3 g/L</td>
</tr>
<tr>
<td>Alcohol</td>
<td>Saponin, 30 g/L; Polysorbate 80, 30 g/L; Lecithin, 3 g/L</td>
</tr>
<tr>
<td>Chlorhexidine digluconate</td>
<td>Saponin, 30 g/L; Polysorbate 80, 30 g/L; Lecithin, 3 g/L; L-histidine, 1 g/L</td>
</tr>
</tbody>
</table>

Table 2. Bactericidal and fungicidal activity of tested formulations.

<table>
<thead>
<tr>
<th>Test organisms</th>
<th>Formulations</th>
<th>Interfering substance</th>
<th>Logarithmic reduction of microorganisms after contact time</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.aureus</td>
<td>A (CHX 2%)</td>
<td>Clean condition</td>
<td>4.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dirty condition</td>
<td>4.84</td>
</tr>
<tr>
<td>E.coli K12</td>
<td>B (PVP-I 7.5%)</td>
<td>Clean condition</td>
<td>>5.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dirty condition</td>
<td>4.94</td>
</tr>
<tr>
<td>P.aeruginosa</td>
<td>C (IPA 70%)</td>
<td>Clean condition</td>
<td>4.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dirty condition</td>
<td>4.12</td>
</tr>
<tr>
<td>E.hirae</td>
<td>D (HP 3%)</td>
<td>Clean condition</td>
<td>>5.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dirty condition</td>
<td>>4.04</td>
</tr>
<tr>
<td></td>
<td>Clean condition</td>
<td>Dirty condition</td>
<td>Clean condition</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>C. albicans</td>
<td>3.52 >4.52 >4.04 >4.52 >4.26 >4.26 0.11 0.21 >4.21 >4.21</td>
<td>3.27 >4.52 3.04 >4.52 >4.26 >4.26 0.05 0.09 >4.21 >4.21</td>
<td>1.76 1.98 2.24 2.69 >4.33 >4.33 0.07 0.11 >4.05 >4.05</td>
</tr>
<tr>
<td>A. brasiliensis</td>
<td>1.76 1.98 2.24 2.69 >4.33 >4.33 0.07 0.11 >4.05 >4.05</td>
<td>0.88 1.76 1.25 2.53 >4.33 >4.33 0.04 0.04 >4.05 >4.05</td>
<td></td>
</tr>
</tbody>
</table>