On some sums at the a-points of the k-th derivatives of the Dirichlet L-functions

Mohammed MEKKAOUI1, Abdallah DERBAL1, Kamel MAZHOUDA $^2^*$

1Department of Mathematics, Laboratory of nonlinear partial differential equations and history of mathematics, École Normale Supérieure B.P. 92, 16050 Vieux Kouba, Algiers, Algeria, ORCID iD: https://orcid.org/0000-0002-9577-0125, https://orcid.org/0000-0002-9422-6662
2Department of Mathematics, Faculty of Science of Monastir, University of Monastir, Monastir 5000, Tunisia, ORCID iD: https://orcid.org/0000-0002-7284-9404

Received: .201 • Accepted/Published Online: .201 • Final Version: ..201

Abstract: Let $L^{(k)}(s,\chi)$ be the k-th derivative of the Dirichlet L-function associated with a primitive character χ mod q and a be a complex number. The solutions of $L^{(k)}(s,\chi) = a$ are called a-points. In this paper, we give an asymptotic formula for the sums

$$
\sum_{\rho_{a,\chi}^{(k)}:0<\gamma_{a,\chi}^{(k)}<T} L^{(j)}(\rho_{a,\chi}^{(k)},\chi) \quad \text{and} \quad \sum_{\rho_{a,\chi}^{(k)}:1<\gamma_{a,\chi}^{(k)}<T} L^{(j)}(\rho_{a,\chi}^{(k)},\chi) \quad \text{as} \quad T \to \infty
$$

where j and k are non-negative integers and $\rho_{a,\chi}^{(k)}$ denotes an a-point of the k-th derivative $L^{(k)}(s,\chi)$ and $\gamma_{a,\chi}^{(k)} = \text{Im}(\rho_{a,\chi}^{(k)})$.

This work continues the investigations of Kaptan, Karabulut & Yıldırım [7, 10] and Mazhouda & Onozuka [12].

Key words: Dirichlet L-function, a-points, value-distribution.

1. Introduction

Let $L(s,\chi)$ be the Dirichlet L-function associated with a primitive character χ mod q and a be a complex number. The zeros of $L(s,\chi) - a$, which will be denoted by $\rho_{a,\chi} = \beta_{a,\chi} + i\gamma_{a,\chi}$ are called the a-points of $L(s,\chi)$. First, we note that there is an a-point near any trivial zero $s = -2n$ if $\chi(-1) = 1$ and $s = -2n - 1$ if $\chi(-1) = -1$ for sufficiently large n. Apart from these a-points, there are only finitely many other a-points in the half-plane $\text{Re}(s) = \sigma \leq 0$. The a-points with $\beta_{a,\chi} \leq 0$ are said to be trivial. All other a-points lie in a strip $0 < \text{Re}(s) < A$, where A is a constant depending on a; these numbers are called the nontrivial a-points. The number of these a-points satisfies a Riemann-von Mangoldt type formula (we refer to [14, chapter 7.2] for the proof of this formula which is stated for functions in a subclass of the Selberg class including the Dirichlet
\(L\)-functions \(L(s, \chi)\), namely
\[
N_{a, \chi}(T) = \sum_{\rho_{a, \chi} : 0 < \gamma_{a, \chi} \leq T} 1 = \frac{T}{2\pi} \log \left(\frac{qT}{2\pi c_a e} \right) + O(\log T),
\]
where \(c_a = m\) if \(a = 1\) and \(c_a = 1\) otherwise, with \(m = \min\{n \geq 2, \chi(n) \neq 0\}\). Here and in the sequel the error term depends on \(q\), however, the main term is essentially independent of \(a\). Moreover, \(N_{a, \chi}(T) \sim N_\chi(T)\) as \(T \to \infty\), where \(N_\chi(T) = N_{0, \chi}(T)\) denotes the number of nontrivial zeros \(\rho_\chi = \beta_\chi + i\gamma_\chi\) of \(L(s, \chi)\) satisfying \(0 < \gamma_\chi < T\).

In [1], Conrey and Ghosh suggested the problem of estimating the average \(\sum_{0 < \gamma^{(k)} < T} \zeta^{(j)}(\rho^{(k)})\) for non-negative integers \(j\) and \(k\), where \(\rho^{(k)} = \beta^{(k)} + i\gamma^{(k)}\) denote a zero of the \(k\)-th derivative \(\zeta^{(k)}(s)\). One of the first result on this topic was given by Fujii [3]. He gave an asymptotic formula of the sum \(\sum_{0 < \gamma < T} \zeta'(\rho)X^\beta\) for a rational number \(X > 0\). The \(k = 0\) case was treated by Kaptan, Karabulut and Yildirim in [7]. Garunkšišis and Steuding in [4] gave a generalization of Fujii’s asymptotic formula with \(X = 1\) that if \(T \to \infty\), we have
\[
\sum_{\rho_a : 0 < \gamma_a \leq T} \zeta'(\rho_a) = \left(\frac{1}{2} - a \right) \frac{T}{2\pi} \log^2 \left(\frac{T}{2\pi} \right) + (c_0 - 1 + 2a) \frac{T}{2\pi} \log \left(\frac{T}{2\pi} \right)
\]
\[
+ (1 - c_0 - c_0^2 + 3c_1 - 2a) \frac{T}{2\pi} + O \left(T e^{-C \sqrt{\log T}} \right),
\]
where \(C\) is some positive constant and \(c_n\) are the Stieltjes constants given by the Laurent series expansion of \(\zeta(s)\) at \(s = 1\),
\[
\zeta(s) = \frac{1}{s-1} + \sum_{n=0}^{\infty} c_n (s-1)^n
\]
Recently, Mazhouda and Onozuka in [12] proved that for \(j, k \in \mathbb{Z}_{\geq 0}\) and large \(T\),
\[
\sum_{1 < \gamma^{(k)} < T} \zeta^{(j)}(\rho^{(k)}) = (-1)^j (\delta_{j,0} + a\delta_{k,0} + B(j, k)) \frac{T}{2\pi} \left(\log \frac{T}{2\pi} \right)^{j+1} + O_{j,k} (T(\log T)^j),
\]
where the implicit constant in the error terms may depend on \(a\). To do so, they used the following result of Karabulut and Yildirim in [10] for fixed \(j, k \in \mathbb{Z}_{\geq 0}\) and large \(T\), one has
\[
\sum_{0 < \gamma^{(k)} < T} \zeta^{(j)}(\rho^{(k)}) = (\delta_{j,0} + B(j, k)) \frac{T}{2\pi} \left(\log \frac{T}{2\pi} \right)^{j+1} + O_{j,k} (T \log^j T),
\]
where \(\delta_{j,0} = 1\) if \(j = 0\) and \(0\) otherwise,
\[
B(j, k) = \frac{k+1}{j+1} - j \sum_{r=1}^{k} \frac{e^{-z_r}}{z_r^{j+1}} P_k(z_r) + j \sum_{r=1}^{k} \frac{1}{z_r^{j+1}},
\]
2
the sum over r being void in the case $k = 0$ and $z_r (r = 1, ..., k)$ being the zeros of $P_k(z) = \sum_{j=0}^{k} \frac{z^j}{j!}$.

Let $\rho_{a,\chi}^{(k)} = \beta_{a,\chi}^{(k)} + i\gamma_{a,\chi}^{(k)}$ denote an a-point of $L^{(k)}(s, \chi)$. Similar to the a-points of $L(s, \chi)$, there is an a-point of $L^{(k)}(s, \chi)$ near any trivial zero $s = -2n - \left(\frac{1-\chi(-1)}{2}\right)$ for sufficiently large n and apart from these a-points, there are only finitely many other a-points in the half-plane $\sigma \leq C$ for any $C < 0$ (see Lemma 2.1 below).

In this paper, first we give an asymptotic formula for the sum

$$\sum_{\rho_{a,\chi}^{(k); 0 < \gamma_{a,\chi}^{(k)} < T}} L^{(j)}(\rho_{a,\chi}^{(k)}, \chi)$$

and as a consequence, we obtain an estimate for

$$\sum_{\rho_{a,\chi}^{(k): 1 < \gamma_{a,\chi}^{(k)} < T}} L^{(j)}(\rho_{a,\chi}^{(k)}, \chi)$$

where a is a complex number. The first sum extend Karabulut and Yildirim result to the k-th derivative of the Dirichlet L-functions and is evaluated in the following theorem.

Theorem 1.1 Let $k, j \in \mathbb{N}$ be fixed and χ be a primitive character modulo q. Then as $T \to \infty$, we have

$$\sum_{\rho_{a,\chi}^{(k); 0 < \gamma_{a,\chi}^{(k)} \leq T}} L^{(j)}(\rho_{a,\chi}^{(k)}, \chi) = (-1)^j (\delta_{j,0} + B(j,k)) \frac{T}{2\pi} \left(\log \frac{qT}{2\pi}\right)^{j+1} + O_{j,k}\left(T (\log qT)^j\right),$$

where $B(j,k)$ is defined by (1.6).

From Theorem 1.1, we get our main result

Theorem 1.2 Let $k, j \in \mathbb{N}$ be fixed, a be a complex number and χ be a primitive character modulo q. Then as $T \to \infty$, we have

$$\sum_{\rho_{a,\chi}^{(k); 1 < \gamma_{a,\chi}^{(k)} \leq T}} L^{(j)}(\rho_{a,\chi}^{(k)}, \chi) = (-1)^j (\delta_{j,0} + a\delta_{k,0} + B(j,k)) \frac{T}{2\pi} \left(\log \frac{qT}{2\pi}\right)^{j+1} + O_{j,k}\left(T (\log qT)^j\right)(1.10)$$

Here and in the sequel, the implicit constant in the error terms may depend on a.

Remark. By Theorem 1.2, we deduce the average value of $L^{(j)}(\rho_{a,\chi}^{(k)}, \chi)$ over the a-points $\rho_{a,\chi}^{(k)}$ of $L^{(k)}(s, \chi)$ with $1 < \text{Im}(\rho_{a,\chi}^{(k)}) < T$, i.e.,

$$\frac{1}{N_{k,\chi}(a,T)} \sum_{1 < \gamma_{a,\chi}^{(k)} < T} L^{(j)}(\rho_{a,\chi}^{(k)}, \chi),$$

where $N_{k,\chi}(a,T)$ is the number of terms in the above sum. By the same argument as in [13], we have an asymptotic formula for $N_{k,\chi}(a,T)$ which is $\sim (T/2\pi) \log \frac{qT}{2\pi}$ (see [15] for the asymptotic formula of $N_{k,\chi}(0,T)$).
Hence, the average is \((-1)^j (\delta_{j,0} + a\delta_{k,0} + B(j,k)) \left(\log \frac{2\pi}{t} \right)^j \). So this tells us about the size of \(L^{(j)}(s,\chi) \) at certain points (namely the \(a \)-points of \(L^{(k)}(s,\chi) \)).

2. Preliminary lemmas and equations

In this section, we give some lemmas and formulas useful for the proof of our Theorems. We start with well-known results on the Dirichlet \(L \)-function \(L(s,\chi) \) (see Davenport book [2]) and its \(k \)-th derivative. If \(\chi \mod q \) is a primitive character, then

\[
L(s,\chi) = \Lambda(s,\chi)L(1-s,\overline{\chi}),
\]

where

\[
\Lambda(s,\chi) = \frac{2\tau(\chi)}{i^\kappa q} \left(\frac{2\pi}{q} \right)^{s-1} \Gamma(1-s) \sin \left(\frac{\pi}{2} (s + \kappa) \right),
\]

with \(\tau(\chi) = \sum_{r=1}^{q} \chi(r) e^{\frac{2\pi ir}{q}} \) and \(\kappa = \frac{1}{2}(1-\chi(-1)) \). From (2.2) and by stirling’s formula (see [9, page 13]), we get

\[
\Lambda(1-s,\chi) = \frac{\tau(\chi)}{i^\kappa \sqrt{q}} \exp \left\{ it \log \left(\frac{|t|}{2\pi e} \right) - \text{sgn}(t)(\frac{i\pi}{2} - \kappa) \right\} \left(\frac{|t|}{2\pi} \right)^{\sigma - \frac{1}{2}} \left(1 + O \left(\frac{1}{|t|} \right) \right),
\]

in any fixed halfstrip \(\alpha \leq \sigma \leq \beta, |t| \geq 1 \). Moreover, for any fixed \(\sigma, j \geq 0 \) and \(|t| \geq 1 \), we have

\[
\frac{\Lambda'}{\Lambda}(s,\chi) = -\log \frac{|t|}{2\pi} + O \left(\frac{1}{|t|} \right), \quad \left(\frac{d}{ds} \right)^j \frac{\Lambda'}{\Lambda}(s,\chi) \ll |t|^{-j}
\]

and

\[
\Lambda^{(j)}(1-s,\chi) = \Lambda(1-s,\chi) \left(-\log \frac{|t|}{2\pi} \right)^j + O \left(q^{\sigma-\frac{1}{2}} |t|^\sigma \log^j |t| \right).
\]

Using equations (2.3), (2.4) and (2.5) with \(j \)-fold differentiation of the functional equation (2.1), we obtain

\[
L^{(j)}(1-s,\chi) = (-1)^j \Lambda(1-s,\chi) \left(1 + O \left(\frac{1}{t} \right) \right) \sum_{m=0}^{j} \binom{j}{m} \ell^{j-m} L^{(m)}(s,\overline{\chi}),
\]
where σ is fixed, $|t| \geq 1$ and $\ell = \log \left(\frac{q|t|}{2\pi} \right)$. Furthermore, for any fixed $\sigma, k \in \mathbb{Z}_{\geq 0}$ and $t \geq 1$, we have

$$
\frac{L^{(k+1)}}{L^{(k)}}(1-s, \chi) = -\left(1 + O \left(\frac{1}{t} \right) \right) \left(\ell + \sum_{v=0}^{k} \binom{k}{v} \frac{\ell^{v} L^{(v+1)}}{L(s, \chi)} \right)
$$

$$
= -\left(1 + O \left(\frac{1}{t} \right) \right) \left(\ell + \sum_{v=0}^{k} \binom{k}{v} \frac{L^{(v+1)}}{L(s, \chi)} \right)
$$

$$
= -\left(1 + O \left(\frac{1}{t} \right) \right) \left(\ell + \frac{G' k}{G_k} \right),
$$

(2.7)

with the differentiation in G' respect to s. Since $L^w L(s, \chi) \ll w$ when $\sigma \geq 1 + \delta$, for sufficiently large t, we get

$$
\sum_{w=1}^{k} \binom{k}{w} \frac{1}{\ell^w} L^w L(s, \chi) \ll_k \frac{1}{\log qt}.
$$

(2.8)

By expanding the denominator of (2.7) as a power series, we obtain

$$
\left(1 + \sum_{w=1}^{k} \binom{k}{w} \frac{1}{\ell^w} L^w L(s, \chi) \right)^{-1} = \sum_{u=0}^{\infty} (-1)^u \left(\sum_{w=1}^{k} \binom{k}{w} \frac{1}{\ell^w} L^w L(s, \chi) \right)^u
$$

$$
= \sum_{u \leq \frac{\log A}{\log A}} (-1)^u \left(\sum_{w=1}^{k} \binom{k}{w} \frac{1}{\ell^w} L^w L(s, \chi) \right)^u + O \left(\frac{1}{A} \right)
$$

(2.9)

where $\sigma \geq 1 + \delta$ and $t \geq A$ for large A. By the functional equation (2.1) and the Phragmén-Lindelöf principle, we deduce that

$$
L(s, \chi) \ll \epsilon \begin{cases} |qt|^{\frac{1}{2} - \sigma + \epsilon} & \sigma < 0, \\ |qt|^{\frac{1}{2} (1 - \sigma) + \epsilon} & 0 \leq \sigma \leq 1, \\ |qt|^\epsilon & \sigma > 1, \end{cases}
$$

(2.10)

as $|t| \to \infty$ and where ϵ is an arbitrarily small positive number. Moreover, by Cauchy’s integral formula, we get

$$
L^{(k)}(s, \chi) = k! \int_{C} \frac{L(w, \chi)}{(w-s)^{k+1}} ds,
$$

where C is any arbitrarily small circle centered at s. Using the last bound of $L(s, \chi)$, it follows that

$$
L^{(k)}(s, \chi) \ll \epsilon \begin{cases} |qt|^{\frac{1}{2} - \sigma + \epsilon} & \sigma < 0, \\ |qt|^{\frac{1}{2} (1 - \sigma) + \epsilon} & 0 \leq \sigma \leq 1, \\ |qt|^\epsilon & \sigma > 1. \end{cases}
$$

(2.11)
Now, using the same argument as in [13, Lemma 2.6], we get easily

\[
\frac{L^{(k+1)}(s, \chi)}{L^{(k)}(s, \chi)} - a = \sum_{|\gamma_{a, \chi}| \leq 1} \frac{1}{s - \rho_{a, \chi}} + O(\log qt),
\]

(2.12)

for any constants \(\alpha, \beta\) and \(s \in \mathbb{C}\) with \(\alpha \leq \sigma \leq \beta\) and large \(t\).

Lemma 2.1 Let \(k\) be a positive integer, \(\chi\) be a primitive character modulo \(q\) and \(a \in \mathbb{C}\). Then, there exists real numbers \(E_1 = E_1(k, a, q) \leq 0\) and \(E_2 = E_2(k, a, q) \geq 1\) such that there is no \(a\)-point of \(L^{(k)}(s, \chi)\) for \(\{s \in \mathbb{C}, \sigma \leq E_1, |t| \geq 1\}\) and \(\{s \in \mathbb{C}, \sigma \geq E_2\}\).

Proof The case \(a = 0\) was treated by Yildirim in [16]. Hence, we consider only the case \(a \neq 0\). From equation (2.1) and by differentiating \(k\) times, we obtain

\[
L^{(k)}(1 - s, \chi) = (-1)^k \frac{2 \tau(\chi)}{s q} \left(\frac{2 \pi}{q}\right)^{-s} \sum_{j=0}^{k} \Gamma^{(j)}(s) R_{j,k}(s)
\]

\[
= (-1)^k \frac{2 \tau(\chi)}{s q} \left(\frac{2 \pi}{q}\right)^{-s} \left\{ \Gamma^{(k)}(s) \cos \left(\frac{\pi}{2}(s - \kappa)\right) L(s, \chi) + \sum_{j=0}^{k-1} \Gamma^{(j)}(s) R_{j,k}(s) \right\},
\]

(2.13)

where

\[
R_{j,k}(s) = P_{j,k}(s) \cos \left(\frac{\pi}{2}(s - \kappa)\right) + Q_{j,k}(s) \sin \left(\frac{\pi}{2}(s - \kappa)\right),
\]

(2.14)

\[
P_{j,k}(s) = \sum_{n=0}^{k} a_{j,k,n} L^{(n)}(s, \chi)
\]

(2.15)

and

\[
Q_{j,k}(s) = \sum_{n=0}^{k} b_{j,k,n} L^{(n)}(s, \chi),
\]

(2.16)

where, \(a_{j,k,n}\) and \(b_{j,k,n}\) being constants may depend on \(q\). Using [16, Equation(13)]1, derivatives of the Gamma function can be estimated as follows:

\[
\Gamma^{(j)}(s) = \Gamma(s) (\log s)^j \left(1 + O \left(\frac{1}{s \log s}\right)\right)
\]

(2.17)

in the region \(\{s \in \mathbb{C}, \sigma \geq 1 + \delta, |t| \geq 1\}\). Using the last estimate and the fact that in the same region \(L(s, \chi) \times 1\) and \(L^{(j)}(s, \chi) = \sum_{n \geq 2} \frac{\chi(n)(-\log n)^j}{n^s} \ll 1\), we get

\[
\left| \Gamma^{(k)}(s) \cos \left(\frac{\pi}{2}(s - \kappa)\right) L(s, \chi) \right| \ll \left| \Gamma(s) \log^k(s) e^{\pi |t|} \right|
\]

(2.18)

and

\[
\left| \sum_{j=0}^{k-1} \Gamma^{(j)}(s) R_{j,k}(s) \right| \ll \left| \Gamma(s) \log^{k-1}(s) e^{\pi |t|} \right|.
\]

(2.19)
As a consequence, one has

\[L^{(k)}(1-s, \chi) = (-1)^{k} \frac{2\tau(\chi)}{i^s q} \left(\frac{2\pi}{q} \right)^{-s} \Gamma(s) \log^k(s) \cos \left(\frac{\pi}{2} (s - \kappa) \right) L(s, \chi) \left(1 + O \left(\frac{1}{|\log s|} \right) \right) \]

in the region \(\{ s \in \mathbb{C}, \sigma \geq 1 + \delta, |t| \geq 1 \} \). It follows from (2.20) that \(L^k(1-s, \chi) \to \infty \) as \(\sigma \to \infty \).

So there exists, \(E_1 = E_1(k, a, q) \leq 0 \) such that \(|L^{(k)}(s, \chi)| > |a| \) for \(\sigma \leq E_1 \) and \(|t| \geq 1 \). Next, since \(L^{(k)}(s, \chi) = \sum_{n \geq 1} \frac{\chi(n)(-\log n)^k}{n} \) \(\to 0 \) as \(\sigma \to \infty \) there exists, \(E_2 = E_2(k, a, q) \geq 1 \) such that \(|L^{(k)}(s, \chi)| < |a| \).

\(\square \)

Remark. It can also be seen by Rouché’s theorem that there is \(N_k = N_k(a, q) < 0 \) such that \(L^{(k)}(s, \chi) = a \) has only one zero in the region \(\{ s \in \mathbb{C}, -1 - 2n - \kappa < \sigma < 1 - 2n - \kappa, -1 < t < 1 \} \) for \(-n < N_k \). Moreover, apart from these \(a \)-points, there are only finitely many other \(a \)-points in the half-plane \(\sigma \leq C \) for any \(C < 0 \).

From Lemma 2.1, equation (2.11) and by Jensen’s formula, we deduce easily the following lemma.

Lemma 2.2 For any complex number \(a \) and any sufficiently large \(T \), we have

\[N_{k, \chi}(a; 1, T + 1) - N_{k, \chi}(a; 1, T) \ll \log(qT), \]

where

\[N_{k, \chi}(a; 1, T) = \sum_{\rho_{k, \chi}^{(k)}: 1 < \gamma_{\rho_{k, \chi}} < T} 1. \]

3. Proof of Theorem 1.1

To prove Theorem 1.1, we use the same argument as in [10]. For this purpose, we need to extend some lemmas for \(k \)-th derivative of Dirichlet \(L \)-function \(L_k(s, \chi) \). The case \(k = 0 \) was already proved by Kaptan, Karabulut and Yıldırım in [6], so here we assume \(k \neq 0 \).

Lemma 3.1 Let \((b_n)_n \) be a sequence of complex numbers such that \(b_n \ll n^\epsilon \) for any \(\epsilon > 0 \). Let \(a > 1 \) and \(m \) be an integer. Then, for \(1 \leq T_1 \leq T \) and \(|m| = O(T) \) as \(T \to \infty \), one has

\[\frac{1}{2\pi} \int_{T_1}^T A(1 - a - it, \chi) \left(\log \left(\frac{qt}{2\pi} \right) \right)^m \sum_{n=1}^\infty \frac{b_n}{n^{a+it}} dt = \frac{\tau(\chi)}{q} \sum_{1 \leq n \leq qT} b_n e^{-2\pi n \chi} \left(\log n \right)^m + O \left((qT)^{a-\frac{1}{2}} (\log qT)^m \right) + O \left(q^{2a-1} (\log q)^m \right). \]

Proof The case \(m \) non negative is treated by Kaptan in [8, Lemma 2.14] which is based on [5, Lemma 2] (see also [10, Lemma 2.2]). For the case when \(m \) is negative, we use the same argument of Kaptan and [11, Lemma 3.5] to obtain the result.

An elementary computation yields to the following lemma.

\[\square \]
Lemma 3.2 For \(k, i_1, i_2, \ldots, i_k, m \in \mathbb{N}, v \in \{0, 1, \ldots, k\}, \) \(\sigma > 1 \) and \(\chi \) be a Dirichlet character modulo \(q \), let define

\[
\sum_{n=1}^{\infty} \frac{c_n(i_1, i_2, \ldots, i_k; v; m; \chi)}{n^s} := \frac{L(s+1)}{L(s, \chi)}L(m)(s, \chi) \prod_{w=1}^{k} \left(\frac{L(w)}{L(s, \chi)} \right)^{i_w}.
\]

We have

\[
\chi'(n)c_n(i_1, i_2, \ldots, i_k; v; m; \chi) = c_n(i_1, i_2, \ldots, i_k; v; m; \chi')\chi,
\]

for every Dirichlet character \(\chi' \) modulo \(q \), with

\[
|c_n(i_1, i_2, \ldots, i_k; v; m; \chi)| \leq (\log n)^{K+m+1},
\]

where

\[K := i_1 + 2i_2 + \ldots + ki_k + v. \]

Lemma 3.3 Let \(\chi \) be a Dirichlet character modulo \(q \). Let \(k, i_1, i_2, \ldots, i_k, m \in \mathbb{N}, v \in \{0, 1, \ldots, k\} \). For fixed \(k \), if \(i_1 + i_2 + \ldots + i_k \leq \frac{\log x}{\log \log x} \), then as \(T \to \infty \), we have

\[
\sum_{n \leq x} c_n(i_1, i_2, \ldots, i_k; v; m; \chi) = O_k \left(x(\log x)^{K+m}\right),
\]

if \(\chi \) is non principal and

\[
\sum_{n \leq x} c_n(i_1, i_2, \ldots, i_k; v; m; \chi) = \frac{\varphi(q)}{q} S(i_1, i_2, \ldots, i_k; v; m)x(\log x)^{K+m+1} + O_k \left(x(\log x)^{K+m}\right)
\]

if \(\chi \) is the principal character, where

\[
S(i_1, i_2, \ldots, i_k; v; m) = \frac{(-1)^{K+m+1}(v+1)!(m! \prod_{w=1}^{k} (w!)^{i_w}}{(K+m+1)!}.
\]

Proof Let \(\chi \) be a non principal character modulo \(q \). Lemma 3.2 with Perron’s formula [15, chapter 3.12], yields to

\[
\sum_{n \leq x} c_n(i_1, i_2, \ldots, i_k; v; m; \chi) = \int_{1+\frac{1}{\log x} - iU}^{1+\frac{1}{\log x} + iU} \frac{L(v+1)}{L(s, \chi)}L(m)(s, \chi) \prod_{w=1}^{k} \left(\frac{L(w)}{L(s, \chi)} \right)^{i_w} \frac{x^s}{s} ds
\]

+ \(O_k \left(\frac{x}{U}(\log x)^{K+m+2}\right) \),

where \(q \leq U \leq x \). Now, let \(C \) be the rectangle with vertices \(1 + \frac{1}{\log x} - iU, 1 + \frac{1}{\log x} + iU, \sigma_0 + iU \) and \(\sigma_0 - iU \).

Case 1. Assume that \(L(s, \chi) \) has no exceptional zero. We take \(\sigma_0 = 1 - \frac{c}{5 \log qU} \), where \(c \) is the constant such that \(L(s, \chi) \neq 0 \) for \(\sigma > 1 - \frac{c}{5 \log qU} \) (see [2, page 93]). So, the integrand is analytic on and inside \(C \) and we have the bound \(\frac{L(w)}{L}(s, \chi) \ll (\log qU)^w \). Then, we have by Cauchy’s formula

\[
M = \frac{1}{2\pi i} \int_C \frac{L(v+1)}{L(s, \chi)}L(m)(s, \chi) \prod_{w=1}^{k} \left(\frac{L(w)}{L(s, \chi)} \right)^{i_w} \frac{x^s}{s} ds = 0.
\]
Now, using that $L^{(m)}(s, \chi) \ll (qU)^{\frac{1}{2} (1 - \sigma) + \epsilon}$, we get

$$\int_{1 - \epsilon \frac{1}{\log qU} + iU}^{1 + \epsilon \frac{1}{\log qU}} \frac{L^{(v+1)}}{L} (s, \chi) L^{(m)}(s, \chi) \prod_{u=1}^{k} \left(\frac{L^{(u)}}{L} (s, \chi) \right)^{i_{w}} \frac{x^{s}}{s} \ ds \ll (\log qU)^{K+1} \int_{1 - \epsilon \frac{1}{\log qU}}^{1 + \epsilon \frac{1}{\log qU}} (qU)^{\frac{1}{2} (1 - \sigma) + \epsilon} \frac{x^{\sigma}}{s} \ ds \sigma$$

$$\ll x (\log qU)^{K+1} \frac{x^{\sigma}}{s} \ ds \sigma \ll x U^{1 - \epsilon} (\log qU)^{K}.$$ Analogously, we have

$$\int_{1 - \epsilon \frac{1}{\log qU} - iU}^{1 + \epsilon \frac{1}{\log qU} - iU} \frac{L^{(v+1)}}{L} (s, \chi) L^{(m)}(s, \chi) \prod_{u=1}^{k} \left(\frac{L^{(u)}}{L} (s, \chi) \right)^{i_{w}} \frac{x^{s}}{s} \ ds \ll (\log qU)^{K+1} \int_{-U}^{U} (|t|)^{\frac{1}{2} (1 - \sigma_{0}) + \epsilon} \frac{x^{\sigma_{0}}}{|\sigma_{0} + it|} \ dt$$

$$\ll x (\log qU)^{K+1} \frac{x^{\sigma_{0}}}{|\sigma_{0} + it|} \ dt \ll x U^{1 - \epsilon} (\log qU)^{K}.$$ Let $U = (\log x)^{2}$. Then, from all above estimates, we obtain

$$\sum_{n \leq x} c_{n}(i_{1}, i_{2}, ..., i_{k}; v; m; \chi) = O_{k} \left(x (\log x)^{K+m} \right)$$

Case 2. Suppose that there is an exceptional zero β, with $\beta \geq 1 - \frac{c}{4 \log qU}$. Therefore, we take $\sigma_{0} = 1 - \frac{c}{3 \log qU}$. So, the integrand has a pole at β of order $L+1$, where $L = i_{1} + i_{2} + ... + i_{k}$. Hence

$$M = \frac{1}{L!} \frac{d^{L}}{ds^{L}} \left\{ (s - \beta)^{L+1} \frac{L^{(v+1)}}{L} (s, \chi) L^{(m)}(s, \chi) \prod_{u=1}^{k} \left(\frac{L^{(u)}}{L} (s, \chi) \right)^{i_{w}} \frac{x^{s}}{s} \right\}_{s=\beta}$$

$$= \frac{1}{L!} \sum_{\sum_{j=1}^{L} j_{1} + j_{2} + j_{3} = L} \left\{ \frac{L}{j_{1}, j_{2}, j_{3}} \right\} \frac{d^{j_{1}}}{ds^{j_{1}}} \left\{ (s - \beta)^{L+1} \frac{L^{(v+1)}}{L} (s, \chi) L^{(m)}(s, \chi) \prod_{u=1}^{k} \left(\frac{L^{(u)}}{L} (s, \chi) \right)^{i_{w}} \frac{x^{s}}{s} \right\}_{s=\beta}$$

$$\times \frac{d^{j_{2}}}{ds^{j_{2}}} \left\{ x^{s} \right\}_{s=\beta} \frac{d^{j_{3}}}{ds^{j_{3}}} \left\{ \frac{1}{s} \right\}_{s=\beta}$$

$$= (-1)^{L} \frac{x^{\beta}}{L^{L+1}} \sum_{j_{1}=0}^{L} \frac{(-1)^{j_{1}}}{j_{1}!} \beta^{j_{1}} \frac{d^{j_{1}}}{ds^{j_{1}}} \left\{ (s - \beta)^{L+1} \frac{L^{(v+1)}}{L} (s, \chi) L^{(m)}(s, \chi) \prod_{u=1}^{k} \left(\frac{L^{(u)}}{L} (s, \chi) \right)^{i_{w}} \frac{x^{s}}{s} \right\}_{s=\beta}$$

$$\times \frac{L^{-j_{1}}}{j_{2}!} \beta^{j_{2}} (\log x)^{j_{2}}.$$
By Cauchy’s formula on a disk of radius 1 centered at \(s = \beta \), we deduce
\[
\left| \frac{d^j}{ds^j} \left((s - \beta)^{L+1} L^{(w+1)} L^{(m)} (s, \chi) \prod_{w=1}^{k} \left(\frac{L^{(w)}}{L} (s, \chi) \right)^iw \right) \right| \leq \frac{j_1! \max_{|s-\beta|=1} \left| L^{(w+1)} L^{(m)} (s, \chi) \prod_{w=1}^{k} \left(\frac{L^{(w)}}{L} (s, \chi) \right)^iw \right|}{j_1!} \ll k^{-j_1}.
\]

The last equation yields to
\[
M \ll_k \frac{x^\beta}{\beta^{L+1}} \sum_{j_1=0}^{L} \beta^{j_1} \sum_{j_2=0}^{L-j_1} \beta^{j_2} (\log x)^{j_2} - \frac{x^\beta}{\beta} (\log x)^L - \frac{x x (\log x)^L}{\beta}.
\]

As above, we obtain
\[
\sum_{n \leq x} c_n (i_1, i_2, ..., i_k; v; m; \chi) = O_k \left(x (\log x)^{K+m} \right)
\]

Case 3. Suppose the existence of an exceptional zero \(\beta \), with \(\beta < 1 - \frac{c}{\log qU} \). Therefore, proceeding similarly as in case 1, we get
\[
\sum_{n \leq x} c_n (i_1, i_2, ..., i_k; v; m; \chi) = O_k \left(x (\log x)^{K+m} \right).
\]

The proof of Lemma 3.3 when \(\chi \) is principal is closely similar to that in [10, Lemma 2.4].

Lemma 3.4 Let \(\chi \) be a Dirichlet character modulo \(q \). Let \(k, i_1, i_2, ..., i_k, m \in \mathbb{N} \) and \(v \in \{0, 1, ..., k\} \). For fixed \(k \), if \(i_1 + i_2 + ... + i_k \leq \frac{\log x}{\log \log x} \), then as \(T \to \infty \), we have
\[
\sum_{n \leq x} c_n (i_1, i_2, ..., i_k; v; m; \chi) (\log n)^{K-r} = O_{k,r,m} \left(x (\log x)^{r+m} \right)
\]

if \(\chi \) is non principal and
\[
\sum_{n \leq x} c_n (i_1, i_2, ..., i_k; v; m; \chi) (\log n)^{K-r} = \frac{\varphi(q)}{q} S(i_1, i_2, ..., i_k; v; m) x (\log x)^{r+m+1} + O_{k,r,m} \left(x (\log x)^{r+m} \right)
\]

if \(\chi \) is a principal character.

Proof of Theorem 1.1. The basic idea of the proof is to interpret the sum of \(L^{(j)}(\rho_{\chi}^{(k)}, \chi) \) as a sum of residues. By Cauchy’s theorem, we have
\[
\sum_{0 < \gamma_{\chi}^{(k)} < T} \int_{R} L^{(j)}(s, \chi) \frac{L^{(k+1)}(s, \chi)}{L^{(k)}(s, \chi)} ds = \frac{1}{2\pi i} \int_{R} L^{(j)}(s, \chi) \frac{L^{(k+1)}(s, \chi)}{L^{(k)}(s, \chi)} ds
\]
where the integration is taken over a rectangular contour in counterclockwise direction denoted by R with vertices \(-b + ic, a + ic, a + iT, -b + iT\) with some constants \(a, b, c > 0\) such that \(\frac{1}{L^{(k)}(a + it, \chi)} \ll k\), \(0 < b < \frac{1}{8}\) and \(L^{(k)}(s, \chi)\) has no zero on the lines \(t = T\) and \(t = c\). From [16, Theorem 3], we deduce that there are finitely many zeros of \(L^{(k)}(s, \chi)\) in the region \(\sigma < -b\) and \(t > c\), then we have

\[
\sum_{0 < \gamma_{\chi}^{(k)} < T} L^{(j)}(\rho^{(k)}, \chi) = \frac{1}{2\pi i} \int_{R} L^{(j)}(s, \chi) \frac{L^{(k+1)}}{L^{(k)}}(s, \chi) ds + O(1)
\]

\[
= \frac{1}{2\pi i} \left\{ \int_{a+ic}^{a+iT} + \int_{a+iT}^{b+iT} + \int_{b+iT}^{a+ic} \right\} L^{(j)}(s, \chi) \frac{L^{(k+1)}}{L^{(k)}}(s, \chi) ds + O(1)
\]

\[
= I_1 + I_2 + I_3 + I_4 + O(1)
\]

The first integral \(I_1\) is independent of \(T\), so \(I_1 = O(1)\). Next, we consider \(I_2\), using that \(\frac{1}{L^{(k)}(a + it, \chi)} \ll k\) and \(L^{(j)}(s, \chi) \ll 1\), we get \(I_2 = O(T)\). Now, using equation (2.12) and take the horizontal sides of the rectangular contour to be a distance \(\gg \frac{1}{\log qT}\) from any zero of \(L^{(k)}(s, \chi)\), one has

\[
I_3 = \frac{1}{2\pi i} \int_{a+iT}^{b+iT} \sum_{\gamma_{\chi}^{(k)} - t < 1} \frac{L^{(j)}(s, \chi)}{s - \rho_{\chi}^{(k)}} ds + O \left(\int_{a+iT}^{b+iT} \log(qT) L^{(j)}(s, \chi) ds \right)
\]

\[
= O \left((qT)^{1/2} \log qT \sum_{|\gamma_{\chi}^{(k)} - T| < 1} 1 \right) + O \left((qT)^{1/2 + b + \epsilon} \log qT \right).
\]

By Lemma 2.2, we obtain

\[
I_3 = O \left((qT)^{1/2 + b + \epsilon} \log qT \right)^2.
\]

This leads \(I_3 \ll T\), since \(0 < b < \frac{1}{8}\). For the fourth integral \(I_4\), by using equations (2.6), (2.7) and (2.9), we obtain

\[
I_4 = -\frac{1}{2\pi i} \int_{1+b+ic}^{1+b+iT} L^{(j)}(1-s, \overline{\chi}) \frac{L^{(k+1)}}{L^{(k)}}(1-s, \overline{\chi}) ds
\]

\[
= \frac{(-1)^j}{2\pi i} \sum_{m=0}^{j} \binom{j}{m} \int_{1+b+ic}^{1+b+iT} \Lambda(1-s, \overline{\chi}) \ell^{i-m+1} L^{(m)}(s, \overline{\chi}) ds
\]

\[
+ \frac{(-1)^j}{2\pi i} \sum_{m=0}^{j} \binom{j}{m} \int_{1+b+ic}^{1+b+iT} \Lambda(1-s, \overline{\chi}) \ell^{i-m} G_k^{(s, \ell, \chi)} L^{(m)}(s, \overline{\chi}) ds + O(T)
\]

\[
= S_1 + S_2 + O(T).
\]
Lemma 3.1 gives

\[S_1 = (-1)^j \sum_{m=0}^{j} \binom{j}{m} \sum_{1 \leq n \leq \frac{qT}{2\pi}} (-1)^m \chi(n)e^{-2\pi i n} \log n + O \left(T^{b+\frac{1}{2}} (\log qT)^{j+1} \right) \]

\[= (-1)^j \frac{\tau(\chi)}{q} \sum_{1 \leq n \leq \frac{qT}{2\pi}} \chi(n)e^{-2\pi i n} \log n + O \left(T^{b+\frac{1}{2}} (\log qT)^{j+1} \right) \]

\[= \begin{cases}
O \left(T^{b+\frac{j}{2}} (\log qT)^{j+1} \right) & \text{if } j \geq 1, \\
\frac{\tau(\chi)}{q} \sum_{1 \leq n \leq \frac{qT}{2\pi}} \chi(n)e^{-2\pi i n} \log n + O \left(T^{b+\frac{j}{2}} \log qT \right) & \text{if } j = 0.
\end{cases} \]

Recall that (see [2, page 146])

\[e^{-2\pi i n/q} = \frac{1}{\varphi(q)} \sum_{\chi' \equiv q} \tau(\chi') \chi'(-n), \]

when \((n, q) = 1\). The last formula yields to

\[\frac{\tau(\chi)}{q} \sum_{1 \leq n \leq \frac{qT}{2\pi}} \chi(n)e^{-2\pi i n} \log n = \frac{\tau(\chi)}{q\varphi(q)} \sum_{\chi' \equiv q} \tau(\chi') \chi'(-1) \sum_{1 \leq n \leq \frac{qT}{2\pi}} \chi(n)\chi'(n) \log n \]

\[= \sum_{\chi' \equiv \chi} \frac{\tau(\chi)\tau(\chi') \chi'(-1)}{q\varphi(q)} \sum_{1 \leq n \leq \frac{qT}{2\pi}} \chi(n)\chi'(n) \log n \]

\[+ \frac{\tau(\chi)\tau(\chi) \chi(-1)}{q\varphi(q)} \sum_{1 \leq n \leq \frac{qT}{2\pi}} \chi_0(n) \log n. \]

Using the following estimate

\[\sum_{1 \leq n \leq x} \chi_0(n) \log n = \frac{\varphi(q)}{q} x \log(x) + O\left(\frac{\varphi(q)}{q} x \right) + O(q^\epsilon \log(x)) \]

and Pólya-Vinogradov inequality

\[\sum_{n \leq x} \chi(n) \ll 2\sqrt{\log q} \]

for every non principal character modulo \(q\), we obtain

\[S_1 = \begin{cases}
O \left(T^{b+\frac{j}{2}} (\log qT)^{j+1} \right) & \text{if } j \geq 1, \\
\frac{T}{2\pi} \log(qT/2\pi) + O \left(T^{b+\frac{j}{2}} \log qT \right) & \text{if } j = 0.
\end{cases} \]
Now, we estimate S_2. We have
\[
S_2 = \frac{(-1)^j}{2\pi i} \sum_{m=0}^j \binom{j}{m} \int_{1+b+i\ell}^{1+b+iT} \Lambda(1-s, \chi) \ell^{1+\lambda+it} \frac{G_k'}{G_k} (s, \ell, \chi) L^{(m)}(s, \chi) ds + O(T)
\]
\[
= (-1)^j \sum_{m=0}^j \binom{j}{m} \sum_{u \leq \log T} \sum_{v=0}^k (-1)^u \binom{k}{v} \sum_{i_1+i_2+\ldots+i_k=u} \binom{u}{i_1, i_2, \ldots, i_k} \prod_{w=1}^k \binom{k}{w} i_w
\]
\[
\times \frac{1}{2\pi} \int_c \Lambda(-b-it, \chi) \ell^{1-K-m} L^{(m)}(1+b+it, \chi) \frac{L^{(v+1)}}{L}(1 + b + it, \chi) \prod_{w=1}^k \left(\frac{L(w)}{L}(1 + b + it, \chi) \right)^i_w dt
\]
\[
+ O_{j,k} \left(T^{\frac{3}{2} + b + \epsilon} \right).
\]

From Lemma 3.1, we get
\[
S_2 = (-1)^j \sum_{m=0}^j \binom{j}{m} \sum_{u \leq \log T} \sum_{v=0}^k (-1)^u \binom{k}{v} \sum_{i_1+i_2+\ldots+i_k=u} \binom{u}{i_1, i_2, \ldots, i_k} \prod_{w=1}^k \binom{k}{w} i_w
\]
\[
\times \frac{\tau(\chi)}{q} \sum_{1 \leq n \leq \frac{T}{2\pi}} C_n(i_1, i_2, \ldots, i_k; v; m; \chi) e^{-\frac{2\pi in}{\chi}} \sum_{\chi' \equiv q} \frac{1}{\varphi(q)} \tau(\chi') \chi'(-n)
\]

Since
\[
e^{-\frac{2\pi in}{q}} = \frac{1}{\varphi(q)} \sum_{\chi' \equiv q} \tau(\chi') \chi'(-n)
\]
when $(n, q) = 1$, we obtain
\[
S_2 = (-1)^j \sum_{m=0}^j \binom{j}{m} \sum_{u \leq \log T} \sum_{v=0}^k (-1)^u \binom{k}{v} \sum_{i_1+i_2+\ldots+i_k=u} \binom{u}{i_1, i_2, \ldots, i_k} \prod_{w=1}^k \binom{k}{w} i_w
\]
\[
\times \left\{ \sum_{\chi' \neq \chi} \frac{\tau(\chi') \chi'(-1)}{q \varphi(q)} \sum_{1 \leq n \leq \frac{T}{2\pi}} \chi'(-n) c_n(i_1, i_2, \ldots, i_k; v; m; \chi) \right\}
\]
\[
+ O_{j,k} \left(T^{\frac{3}{2} + b + \epsilon} \right).
\]

By Lemma 3.4, we deduce
\[
S_2 = (-1)^j \frac{T}{2\pi} \left(\log \frac{qT}{2\pi} \right)^{j+1} \sum_{m=0}^j \binom{j}{m} \sum_{u \leq \log T} \sum_{v=0}^k (-1)^u \binom{k}{v}
\]
\[
\times \sum_{i_1+i_2+\ldots+i_k=u} \binom{u}{i_1, i_2, \ldots, i_k} \prod_{w=1}^k \binom{k}{w} i_w \frac{(-1)^{K+m+1}(v+1)!m!}{(K+m+1)!} + O_{j,k} \left(T \log qT \right)^j
\]

This last sum S_2 was evaluated by Karabulut and Yildirim in [10]
\[
S_2 = (-1)^j \frac{T}{2\pi} \left(\log \frac{qT}{2\pi} \right)^{j+1} B(j, k) + O_{j,k} \left(T \log qT \right)^j
\]
Combining S_1 and S_2, we obtain

$$I_4 = (-1)^j (\delta_{j,0} + B(j,k)) \frac{T}{2\pi} \left(\log \frac{qT}{2\pi}\right)^{j+1} + O_{j,k} \left(T (\log qT)^j\right).$$

Finally, theorem 1.1 follows from estimates of I_1, I_2, I_3 and I_4.

4. Proof of Theorem 1.2

Let a be a complex number. We write $s = \sigma + it$, $\rho^{(k)}_{a,\chi} = \beta^{(k)}_{a,\chi} + i\gamma^{(k)}_{a,\chi}$ with real numbers $\sigma, t, \beta^{(k)}_{a,\chi}$ and $\gamma^{(k)}_{a,\chi}$. The case $a = 0$ was already proved in Theorem 1.1, so here we assume $a \neq 0$. By the residue theorem, for a sufficiently large constant B and constant $b \in (1, 9/8)$, we have

$$\sum_{1 < \gamma^{(k)}_{a,\chi} < T} L^{(j)} \left(\rho^{(k)}_{a,\chi}, \chi\right) = \frac{1}{2\pi i} \int_{\mathbb{R}} L^{(j)}(s, \chi) \frac{L^{(k+1)}(s, \chi)}{L^{(k)}(s, \chi) - a} \, ds + O(1),$$

where the integration is taken over a rectangular contour in counterclockwise direction denoted by \mathbb{R} with vertices $1 - b + i, B + i, B + iT, 1 - b + iT$. Since there are finitely many a-points in $\{s \in \mathbb{C}; \text{Re}(s) \leq 1 - b, \text{Im}(s) \geq 1\}$, we have

$$\sum_{1 < \gamma^{(k)}_{a,\chi} < T} L^{(j)} \left(\rho^{(k)}_{a,\chi}, \chi\right) = \frac{1}{2\pi i} \int_{\mathbb{R}} L^{(j)}(s, \chi) \frac{L^{(k+1)}(s, \chi)}{L^{(k)}(s, \chi) - a} \, ds + O(1).$$

Hence,

$$\sum_{1 < \gamma^{(k)}_{a,\chi} < T} L^{(j)} \left(\rho^{(k)}_{a,\chi}, \chi\right) = \frac{1}{2\pi i} \left\{ \int_{1-b+i}^{B+i} + \int_{B+i}^{B+iT} + \int_{B+iT}^{1-b+iT} + \int_{1-b+iT}^{1-b+i} \right\} L^{(j)}(s, \chi) \frac{L^{(k+1)}(s, \chi)}{L^{(k)}(s, \chi) - a} \, ds + O(1)$$

$$:= \frac{1}{2\pi i} (I_1 + I_2 + I_3 + I_4) + O(1).$$

The integral I_1 is independent of T, so we have $I_1 = O(1)$. Next, we consider I_2. Since $L^{(k)}(s, \chi) \to 0$ as $\sigma \to \infty$ if $k \geq 1$, we choose in this case B such that $|L^{(k)}(B + it, \chi)| < \frac{|t|}{\pi}$, then we have $\frac{1}{L^{(k)}(B + it, \chi) - a} \ll k / 1$. Using this and $L^{(j)}(s, \chi) \ll 1$, we get

$$I_2 = O(T).$$

For the case $k = 0$, recall that, for $\sigma \to \infty$, we have $L(s, \chi) = 1 + o(1)$ and $L'(s, \chi) \ll 2^{-\sigma}$ uniformly in t. Hence, there are no a-points for sufficiently large σ provided that $a \neq 1$. For the case $a = 1$, we define $m = \min\{n \geq 2, \chi(n) \neq 0\}$. We observe, for $\sigma \to \infty$, $L(s, \chi) - 1 = \frac{\chi(m)}{m^{\sigma-1}} (1 + o(1))$. Hence, we choose B a fixed constant sufficiently large such that there are no a-points of $L(s, \chi)$ in the half-plane $\sigma > B - 1$. Therefore, we deduce that

$$I_2 = O(T).$$
From equation (2.12), we get

\[I_3 = \sum_{|\gamma^{(k)}_{a,\chi} - T| < 1} \int_{B + iT}^{1 - b + iT} \frac{L^{(j)}(s, \chi)}{s - \rho^{(k)}_{a,\chi}} ds + O \left(\int_{B + iT}^{1 - b + iT} (\log qt)L^{(j)}(s, \chi) ds \right). \]

Now, we change the path of integration. If \(\gamma^{(k)}_{a,\chi} < T \), we change the path to the upper semicircle with center \(\rho^{(k)}_{a,\chi} \) and radius 1. If \(\gamma^{(k)}_{a,\chi} > T \), we change the path to the lower semicircle with center \(\rho^{(k)}_{a,\chi} \) and radius 1. Then, we have

\[\frac{1}{s - \rho^{(k)}_{a,\chi}} \ll 1 \]

on the new path. This estimate and the bound (21) yields

\[I_3 = O \left((qT)^{b - \frac{1}{2} + \epsilon} \sum_{|\gamma^{(k)}_{a,\chi} - T| < 1} 1 \right) + O \left((qT)^{b - \frac{1}{2} + \epsilon} \log \log qT \right). \]

By Lemma 2.2, we obtain

\[I_3 = O \left((qT)^{b - \frac{1}{2} + \epsilon} \log \log qT \right). \]

This leads \(I_3 \ll T \), since \(1 < b < 9/8 \).

Finally, we estimate \(I_4 \). By equation (2.20) and Stirling’s formula, for fixed \(1 < b < 9/8 \) and large \(|t| > 2 \), we have

\[\left| L^{(k)}(1 - b + it, \chi) \right| \asymp |qt|^{b-1/2} |\log |t||^k. \] (4.3)

Therefore, there exists a constant \(A \) such that

\[\left| \frac{a}{L^{(k)}(1 - b + it, \chi)} \right| < 1 \]

holds for any \(|t| \geq A \). We divide the path of the integral into two parts

\[I_4 = \left(\int_{1 - b + iT}^{1 - b + iT} + \int_{1 - b + iT}^{1 - b + iT} \right) L^{(j)}(s, \chi) \frac{L^{(k+1)}(s, \chi)}{L^{(k)}(s, \chi)} ds. \]

The second term is \(O(1) \) since it is independent of \(T \). Since the integrand of the first term has a geometric series, we have

\[I_4 = - \sum_{n=0}^{\infty} a^n \int_{1 - b + iT}^{1 - b + iT} L^{(j)}(s, \chi) L^{(k+1)}(s, \chi) (L^{(k)}(s, \chi))^{n+1} ds + O(1). \]

By (4.3), the integrand can be estimated as

\[\frac{L^{(j)}(s, \chi)L^{(k+1)}(s, \chi)}{(L^{(k)}(s, \chi))^{n+1}} \asymp |qt|^{(b-1/2)(1-n)}(\log t)^{-kn+j+1}. \] (4.4)
Hence, each integral can be calculated as

\[I_{4} = - \int_{1-b+iA}^{1-b+iT} \frac{L(j)(s, \chi)L^{(k+1)}(s, \chi)}{(L^{(b)}(s, \chi))^{n+1}} ds \ll (qT)^{(b-1/2)(1-n)+1+\varepsilon} \]

for any small \(\varepsilon > 0 \). It follows from the last estimate that the sum for \(n \geq 2 \) is bounded as

\[\sum_{n=2}^{\infty} a^{n} \int_{1-b+iA}^{1-b+iT} \frac{L(j)(s, \chi)L^{(k+1)}(s, \chi)}{(L^{(b)}(s, \chi))^{n+1}} ds \ll T^{-(b-1/2)+1+\varepsilon} \ll T^{1/2}. \]

Therefore, we get

\[I_{4} = - \int_{1-b+iA}^{1-b+iT} \frac{L(j)(s, \chi)L^{(k+1)}(s, \chi)}{L^{(b)}(s, \chi)} ds - a \int_{1-b+iA}^{1-b+iT} \frac{L(j)(s, \chi)L^{(k+1)}(s, \chi)}{(L^{(b)}(s, \chi))^{2}} ds + O(T^{1/2}) \]
\[:= -K_{1} - aK_{2} + O\left(T^{1/2}\right). \]

We already studied \(K_{1} \) in Theorem 1.1 and we get the estimate

\[K_{1} = -2\pi i \left\{ \delta_{j,0} \frac{T}{2\pi} \log \frac{qT}{2\pi} + (-1)^{j} B(j, k) \frac{T}{2\pi} \left(\log \frac{T}{2\pi} \right)^{j+1} + O(T(\log qT)^{j}) \right\}. \]

It remains to evaluate \(K_{2} \). By equation (4.4), for \(k \geq 1 \), one has

\[K_{2} \ll \int_{1-b+iA}^{1-b+iT} |\log t|^{j} |ds| \ll T(\log T)^{j}. \]

In the case \(k = 0 \), we use equations (2.1) and (2.6) to obtain

\[\frac{L(j)(s, \chi)L'(s, \chi)}{L^{2}(s, \chi)} = (-1)^{j+1} \ell^{j+1} \left(1 + O\left(\frac{1}{|t|} \right) \right) \]

(4.5)

for fixed \(\sigma \) and \(|t| \gg 1 \), where \(\ell := \log(q|t|)/2\pi \). Then, we have

\[K_{2} = \int_{1-b+iA}^{1-b+iT} \left((-\ell)^{j+1} + O(\log q|t|^{j}) \right) ds \]
\[= (-1)^{j+1} iT \left(\log \frac{qT}{2\pi} \right)^{j+1} + O(T(\log qT)^{j}). \]

Combining estimates of \(K_{1} \) and \(K_{2} \), we get

\[I_{4} = (-1)^{j} 2\pi i \left(\delta_{j,0} + a\delta_{k,0} + B(j, k) \right) \frac{T}{2\pi} \left(\log \frac{qT}{2\pi} \right)^{j+1} + O(T(\log qT)^{j}). \]

Finally, Theorem 1.2 follows from estimates of \(I_{1}, I_{2}, I_{3} \) and \(I_{4} \).

5. Concluding remarks

The \(\alpha \)-points of an \(L \)-function \(L(s) \) are the roots of the equation \(L(s) = \alpha \). We refer to Steuding book [14, chapter 7] for some results about \(\alpha \)-points of \(L \)-functions from the Selberg class. Therefore, it is an interesting question to extend Theorem 1.1 and mainly Theorem 1.2 to the other class of Dirichlet \(L \)-functions (the Selberg class with some further condition) and its higher derivative. This problem will be considered in a sequel to this paper since it is done for the Riemann Zeta function and its \(k \)-th derivative in [6] and [12].
Acknowledgment

The authors would like to express their sincere gratitude to the referee for her/his many valuable suggestions which increased the clarity of the presentation.

References