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Abstract: The Internet infrastructure relies on the Border Gateway Protocol (BGP) to provide essential routing
information where abnormal routing behavior impairs global Internet connectivity and stability. Hence, employing
anomaly detection algorithms is important for improving the performance of BGP routing protocol. In this paper, we
propose two algorithms; the first is the guide feature generator (GFG), which generates guide features from traditional
features in BGP time-series data using moving regression in combination with smoothed moving average. The second
is a modified random forest feature selection algorithm which is employed to automatically select the most dominant
features (ASMDF). Our mechanism shows that the detected anomalies are more realistic and the selected features are
generally consistent across time series. Experimental evaluations using multiple machine learning models reveal that the
proposed algorithms achieve up to 32.36% improvement in accuracy rate, up to 35.44% reduction in false negative rate,
and up to 43.99% reduction in false positive rate compared to not using these algorithms. Moreover, the ASMDF option

increases the feature selection speed more than 3 times compared to most existing feature selection algorithms.
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1. Introduction
The Border Gateway Protocol (BGP) is used to exchange routing information between border routers in a
network comprising many autonomous systems. BGP generates four types of messages: open, update, keep
alive, and notification, which are exchanged among BGP peers based on a set of metrics such as the nearest
next-hop router, the shortest autonomous system path, and routing policies. While messages are exchanged
among peers, BGP anomalies may be triggered by a variety of events such as router misconfigurations, session
resets, and link failures. The simplest definition of BGP anomalies is any update that does not reflect a change
in the underlying BGP network or routing policy. These anomalies degrade network performance and efficiency.
Many techniques have been employed to detect BGP anomalies [1]. Unfortunately, these existing anomaly
detection methods select the traffic features of the present to make the decision regardless of the time series of
the traffic data, where time-series analysis can bring extra important information in identifying state changes.
Considering this limitation, we proposed a time-series unit that consists of three stages: feature extraction,
feature selection, and machine learning stage. The main aim is speeding up and improving the performance of
the anomaly detection process in the case of real-time detection. It can also be used if we have a huge number
of update messages stored and want to process these messages as time-series data.

For the first stage, we propose the guide feature generator (GFG) algorithm. The main functions of
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this algorithm are to receive series of update messages, extract traditional and new guide features from these
messages, mark periods that represent abnormal activities, and output successive vector sets of extracted
features. To mark abnormal periods, the GFG uses our proposed equation that employs moving regression
in combination with smoothed moving average, which is commonly used with time-series data. As a result, it
is easy to select the vector sets that contain abnormal activities and test them in the third machine learning
stage and neglect the normal vector sets. The new guide features generated by the GFG algorithm improve the
classification results.

In the second stage, the small groups of successive vector sets produced by the first stage are passed to the
proposed algorithm to automatically select the most dominant features (ASMDF) to select the most dominant
features for each abnormal vector set only, where each vector set has different dominant features. We propose
this modified feature selection algorithm for three reasons: to adapt with incoming series data, to directly pass
each abnormal vector set with its dominant features to the third stage, and to stop executing the third stage for
unmarked normal vector sets where the third stage is any selected machine learning technique, which receives
each vector set with its dominant features from the second stage, for performing the classification process. This
leads to decreasing processing time and computations.

Moreover, the ASMDF algorithm automatically selects the most dominant subset of features by employing
the random forest mechanism [2], and we suggest two improvements to speed up its computations. First is to
generate a small group of successive vector sets by the GFG algorithm, and second is to use orientation rather
than magnitude (vector set values) by applying the cosine similarity equation [3] on the generated vector set to
produce a smaller cosine similarity matrix that generates fewer random forest trees compared to its corresponding
vector set. For this purpose, we add the cosine similarity equation as underlying the ASMDF algorithm.

In summary, the contributions of this work are as follows:

e In stage 1: The proposed GFG algorithm handles time-series data in an efficient way using our
proposed time-series equation and marks the abnormal vector sets. Moreover, using the guide features that
are generated by the GFG raises the machine learning classification accuracy improvement rate up to 32.36%,
improvement in decreasing the false negative rate up to 35.44%, and improvement in decreasing the false positive
rate up to 43.99% during the testing phase.

e In stage 2: The proposed ASMDF algorithm is modified to adapt to the time-series data. Moreover,
it is used to process the abnormal vector sets only and passes each vector set with its dominant features to the
third stage. This leads to decreasing processing time and computations in the third machine learning stage by
testing only the abnormal vector sets. Besides, using the cosine similarity as underlying the ASMDF increases
the feature selection speed more than 3 times compared to most existing feature selection algorithms.

This paper is structured as follows. In Section 2, we present a brief literature review related to our work.
Section 3 describes our methodology for gathering BGP update messages and discusses the proposed scenario.
Section 4 discusses the proposed algorithms. Section 5 presents the simulation results using supervised machine

learning techniques. Section 6 concludes the paper and future work.

2. Related work

Many techniques have been proposed to identify anomalies by analyzing traffic patterns. One of the early
and common methods is developing traffic behavior models based on statistical techniques [4, 5], where the
anomalies are identified as correlated abrupt changes occurring in the underlying distribution. However, the

disadvantage is that it is difficult to estimate the dimension distributions with all possible cases. Also, clustering
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techniques [6] were proposed to classify all regular traffic data points belonging to one cluster while anomalous
data points may belong to multiple clusters. The main disadvantage of the clustering techniques is that they are
optimized to find the regular traffic rather than the anomalous traffic, which is usually the goal of the detection
techniques. Another widely used approach is the rule-based technique [7], which builds classifiers based on a set
of rules. The drawback is that it requires a priori knowledge and a high degree of computations. Many machine
learning techniques have been employed to build traffic classification models [8, 9] for both unsupervised and
supervised machine learning models to detect anomalies. Although neural networks have the ability to detect
the complex relationship among features, they have many drawbacks such as high computational complexity
and high probability of overfitting. Support vector machine (SVM) techniques detect the anomaly patterns in
data using nonlinear classification functions and classify each data point based on its value obtained by the
classifier function. SVMs build a classification model that maximizes the margin between the data points that
belong to each class. Several variants of SVM detection techniques are introduced and evaluated [10], but they
have high computational complexity because of the quadratic optimization problem that needs to be solved.
Finally, Bayesian networks (BN) techniques are used in many real-time classification systems because of their
low time complexity. BNs rely on two assumptions: the features are conditionally independent given a target
class and the posterior probability is the classification criterion between any two data points. Several anomaly
detection schemes have implemented variants of BNs [11, 12].

Most models mentioned here are not designed for sequence classification and are not suitable for anomaly
detection in time series, where they only treat the input instances independently without considering the
sequenced nature of traffic data. In reality, traffic data are multivariant time series and the anomaly patterns

vary gradually with the temporal information. For this reason, we propose our work.

3. BGP data and methodology

The Réseaux IP Européens Network Coordination Centre (RIPE NCC) collects and stores Internet routing
data through the Routing Information Service project (www.ripe.net). BGP update messages are collected by
remote route collectors (RRCs) and stored in Multithreaded Routing Toolkit (MRT) binary format (available:
RFC 6397). BGP update messages can originate from multiple monitoring points (collectors), where RIPE NCC
operates several collectors and each monitoring point peers with multiple operational BGP routers at various
ISPs. We converted multiple BGP update messages from MRT into ASCII format by using the bgpdump
library on the Linux platform. bgpdump is a C library maintained by RIPE NCC that is used to analyze dump
files produced by MRT. We collected these BGP update messages during the time periods that experienced
anomalies. These BGP update messages were collected specifically from two collectors (RRC02 and RRC04) up
to 2017 in 10 groups. These groups were collected with an average duration of 3 days per group. During these
periods many changes in BGP behavior, such as BGP hijacking [13], worm attack [14], and link failures [15],
are detected. The collected groups contain the following: the peak day of an anomaly, one day prior, and one

day after the anomaly. This sampling yields a huge number (22 x 10°) of collected BGP update messages.

3.1. The proposed scenario

For clarification, we designed our proposed algorithms to handle BGP update messages as time-series data in
an attempt to speed up and enhance the process of detecting anomalies. In the first stage, the number of BGP

update messages that are received in 1 min by the GFG algorithm is called a block, as shown in Figure 1.
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While the GFG algorithm receives a series of blocks, it extracts features from these blocks and samples them
every minute (row/min). The GFG algorithm produces two types of features: traditional features, which are
extracted from BGP update messages, and guide features, which are generated from traditional features. There
are 16 traditional and 16 guide features, as shown in Table 1. The second step of the GFG algorithm is to
mark the anomalous periods by employing the guide features that are generated by applying moving average
and moving regression to the corresponding traditional feature as explained in Section 4.1. The guide feature
values (each value is one binary bit, “1” for abnormal and “0” for normal) in each vector set are used to quickly
identify the periods that are likely to contain anomalies or imbalances. If these guide feature values assign 1 to
a long period crossing multiple vector sets, this is an indicator of abnormal activities. Based on these abnormal
periods, only a specific number of vectors that have abnormal values in guide feature(s) are used to perform the
classification quickly and without consuming much time in processing all incoming time-series data. Moreover,
one of the advantages of employing moving average and moving regression is to generate each guide feature
from its traditional feature at the same time or step by step; this means that there is synchronization between
producing both types of features. Finally, the GFG algorithm outputs small groups of successive vector sets,
where each vector set is assembled in a random time less than 12 min by the GFG algorithm and has multiple

rows for 32 features.
In the second stage, the proposed ASMDF algorithm, which is designed to handle time-series data,

receives these vector sets as shown in Figure 1. The ASMDF algorithm checks if the vector set is marked by
the GFG algorithm (containing abnormal values in guide features). For marked vector sets only, the ASMDF
algorithm selects the most dominant features for each vector set where each vector set has its own different
dominant features and directly passes the vector set with its dominant features to the third machine learning
stage. The third stage is any selected machine learning technique, which receives each marked vector set with
its dominant features from the second stage, for performing the classification process. This stage does not test
the unmarked vector sets, which leads to decreased processing time and computations. The pseudocode for the
time-series unit (3 stages) is presented in Table 2. This can be applied in the case of real-time detection and
also if we have a huge number of update messages stored and want to process these messages as time-series
data. For better clarification, Section 4.1 describes how the guide feature is generated from its corresponding

traditional feature.

4. The proposed algorithms

In this section, we describe our proposed algorithms. These algorithms are used to handle different types of
anomalies or abnormal network activities that appear in BGP update messages. The proposed algorithms

consider the generated samples as a time series of BGP data traffic.

4.1. The GFG algorithm

The GFG algorithm receives a time series of update messages, handles it as a sequence of blocks, and generates
vector sets that contain two types of features: traditional and guide, as described in Section 3.1. The GFG
algorithm is not for feature selection but for improving detection, where any traditional feature can be used
to generate a guide feature, thereby helping to quickly identify periods in time-series data that may represent
abnormal activities. Each guide feature is generated by applying moving average and moving regression to its
corresponding traditional feature and the output is in the form of individual binary bits. The result is that,

in the vector set, each guide feature contains the values that are likely to represent anomalies or imbalances
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Table 1. Features generated by the GFG algorithm.

Traditional Definition of traditional features Guide

features features®

ANUM Number of announcement update g. ANUM
messages

WNUM Number of withdrawal update g. WNUM
messages

IGP Number of BGP update messages g.IGP
generated by an interior gateway
protocol

EGP Number of BGP update messages g.EGP
generated by an exterior gateway
protocol

INCOM Number of incomplete update g.INCOM
messages generated by unknown
sources

ATP Number of announced NLRI* prefixes | g.AIP
inside BGP update messages

WIP Number of withdrawn NLRI® prefixes | g WIP
inside BGP update messages.

ASMIN Minimum AS-PATH length g. ASMIN

ASMAX Maximum AS-PATH length g. ASMAX

ASAVG Average AS-PATH length g.ASAVG

DUBA Number of duplicate announcement g.DUBA
BGP update messages

DUBW Number of duplicate withdrawal BGP | g.DUBW
update messages

IMPAW Number of update messages g.IMPAW
announced and then withdrawn for the
same prefix

MXDST Maximum edit distance g.MXDST

AVDST Average edit distance g.AVDST

MSARR Average message interarrival time g.MSARR

@ Network layer reachability information, ® calculated from traditional, © binary bits.

in traffic (anomalies or imbalances as 1 and 0 otherwise). If these guide feature values are assigned 1 for long
period crossing multiple vector sets, it is an indicator of anomalies or imbalances.

The algorithm behaves according to the following five steps for each block of the algorithm:

Step 1. Extracts the traditional features.

Step 2. Calculates the moving average [16] for each traditional feature to smooth out the feature values
using Eq. (1).

. K
Vi= K1 Z ditj (1)
J

Here, V; is the moving average smoother, d; is the time-series data, and K is the average block size. The
moving average is commonly used with time-series data to smooth out short-term fluctuations and highlight

longer-term trends or cycles.
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Figure 1. Time-series unit (3 stages).

Table 2. Time-series unit (3 stages) pseudocode.

Input: BGP block, number of update messages in 1 min
Output: Machine learning classification results
Stage 1 (The GFG algorithm):
Set vector set assembler timer
if new block received do
Extract traditional and guide features
Mark abnormal activity periods
if vector set assembler timer reset then
Generate new vector set and send it to Stage 2
else wait a new block
repeat with frequently input data
Stage 2 (The feature selection algorithm):
if normal vector set received then wait new vector set
else if abnormal vector set received do
Select the most dominant features
Send the vector set with its dominant features to Stage 3
repeat with frequently input data
Stage 3 (Machine learning classification process)

Step 3. Calculates the moving regression for each traditional feature using Eq. (2).

Yo = TS+ €4

2)

Here, y; is the dependent variable (also called the response variable), such as the g. ANUM feature; x; is the
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independent variable (also called the predictor); ; is an unobserved random variable, known as the error or
disturbance term; and S is the coefficient or slope parameter, which represents the slope of the straight line
that the equation describes. Moving regression is derived from basic regression [17, 18], also known as rolling
regression or recursive regression, which is often used in time-series analysis to assess the stability of the model
parameters with respect to time and finding the best-fitting line through the points. The best-fitting line
(also called the regression line) represents the average relationship between the response variable (y;) and the
predictor variable (z).

We assume that z; is the initial probability of attack, which is calculated only once for each traditional

feature during every block period, where x; are output fractional values between 0 and 1, calculated using Eq.

(3).
T =1-— (l;fgf;) (3)

Here, Fopt, is the optimal average traditional feature value and is calculated based on normal feature values
experienced over a long period of time crossing multiple blocks, and Favg is the average value for that traditional
feature during the block period. Fopt; is updated based on the latest guide feature values during normal traffic,
i.e. when the guide feature values are 0. During anomalous periods, the Favg values are very large and z; is
close to 1, while in normal conditions Favg is approaching Fopt, and z; is close to 0. 1y, is the traditional
feature such as ANUM, IGP, and AIP features. The outputs from Eq. (2) are stored as Ry, where Ry is the
moving regression output values using Eq. (2).

The moving regression values are calculated for each traditional feature, and the calculations are repeated
on the data sequence as long as data blocks are received by the GFG algorithm. The GFG algorithm produces
constant moving regression values for each traditional feature during each block period because each traditional
feature has its own constant initial probability of attack value (x;). The initial probability of attack value
(x¢) for any traditional feature changes only when moving from one block to the next block. In general, the
regression line for any traditional feature is an output line that changes its constant value when moving from

one block to another.
Step 4. Calculates the deviation rate DR; for each block received by the GFG algorithm. Deviation

rate DR, is a novel attribute defined in Eq. (4).
DRt = Rt +o (‘/t) (4)

Here, R; is the moving regression output values using Eq. (2), V; is the moving average calculated using Eq.
(1), and o (V) is the standard deviation of the moving average that is calculated only once using Eq. (5) during

each block period.

Here, p is the mean, N is the number of values, p; is the probability of V; , and o (V;) is the standard deviation
of the moving average V.

Adding the standard deviation to the moving regression as in Eq. (4) causes the output line to be very
close to the maximum y; values without exceeding it. Clearly, the y; values increase as the probability of attack
increases while the number of messages exchanged among the routers increases dramatically and for periods

that may be long.
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Step 5. Finally, the intersection of the smoothed time-series data points (V;) and the deviation rate
output values (DR;) over time may be very useful as an indicator of anomalies or imbalances in traffic. For
example, see Figures 2 and 3.

One of the advantages of employing moving average and moving regression is that both the smoothed line
and the deviation rate line are generated at the same time, which means there is synchronization in producing
the two lines. We take advantage of the output of these intersections and employ it as a new guide feature,
which may be very useful in detecting any defects or attacks experienced by the network. For this reason,
the obtained results are recorded as binary values, where each intersection is represented by a value of 1 and
otherwise 0 and stored as a new guide feature, such as the g. ANUM feature in Figure 4.

For a better understanding of this algorithm, suppose that a slammer attack appears in the time-series
data where 3, is the number of announcement BGP update messages “ANUM?”, which are increased during the
slammer attack for a long period of time as shown in Figure 2. The intersections that were mentioned before
can be shown in Figure 3; the smoothed feature line represents the smoothed ANUM feature values, which are
calculated using Eq. (1), while the deviation rate line represents the sequence of deviation rate values, which
are calculated using Eq. (4), and the high spikes that appear for a short period time do not belong to any
attack but rather are due to open and closed BGP sessions. The output results are recorded as binary values,
where each intersection is represented by a value of 1 and otherwise 0 and stored as a new feature called the
g.ANUM as shown in Figure 4. The pseudocode for the GFG algorithm is presented in Table 3.

ANUM
2000 3000
I ! I !

1000
L

Slammer

500
I

0
I

T T T T T T
0 10000 20000 30000 40000 50000 60000

Time in minutes

Figure 2. Slammer attack as appeared in ANUM feature.

In this paper, we did not focus on the differences between anomalies and other imbalance types; instead,
we only focus on detecting anomalies by employing suitable machine learning techniques. For other imbalances

types, we will employ different techniques as a future work.

4.2. The proposed feature selection algorithms
4.2.1. The ASMDF algorithm
Feature selection algorithms are categorized as filter, wrapper, and hybrid [19]. The proposed ASMDF algorithm

is a modified feature selection algorithm, which has the advantage of dealing with time-series data and makes

use of the effective random forest tree model. The random forest is a versatile machine learning technique
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Figure 3. Smoothed ANUM feature and its deviation Figure 4. The g. ANUM feature (intersection points).
rate.

Table 3. The GFG pseudocode.

Input: Blocks of update messages

Output: Vector sets

Set block timer

Set vector set assembler timer

if block received begin

Extract traditional features

Smooth extracted features, calculating the moving average, V;

Calculate the moving regression values for each feature, Ry
if end of block begin
Calculate the standard deviations o (V) for V;
Calculate the deviation rates, DR; = Ry + o (V4)
Measure R; and V;, the “intersection results”
Record the guide features’ binary results
increment block counter and reset timer
end

if vector set assembler timer reset then

Generate new vector set and send it to Stage 2

end

repeat with frequently input data

capable of performing both regression and classification tasks but may be very slow, especially when using

a large number of trees to predict final results. To speed up the feature selection computations, we suggest

two improvements: the first is to generate a small group of successive vector sets by the GFG algorithm and

the second is to use orientation rather than magnitude (vector set values) by applying the cosine similarity

equation to the vector set to produce a smaller cosine similarity matrix that generates fewer random forest trees

compared to the corresponding vector set. For this purpose, we add the cosine similarity equation as underlying

the ASMDF algorithm where the cosine similarity is a measure of similarity between two nonzero features of an

inner product space that measures the cosine of the angle between them. It is thus a judgment of orientation and
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not magnitude: two features with the same orientation have a cosine similarity of 1, two features at 90° have a
similarity of 0, and two features diametrically opposed have a similarity of —1, independent of their magnitude.
Given two features, A and B, the cosine similarity, C, is represented using a dot product and magnitude as in

Eq. (6), where A; and B; are components of feature A and B, respectively, of length n.

> iy AiBi

C = n n
Vi ARV B

(6)

For each abnormal marked vector set, the ASMDF algorithm calculates the cosine similarity matrix
between all traditional features and returns a similarity matrix of cosine values. The similarity matrix values
are orientations and not a series of individual values (magnitude), which results in the size of the matrix being
smaller compared to using a series of individual values (vector set values). The ASMDF algorithm uses the
cosine matrix to generate the random forest trees, which are fewer in number compared to the corresponding
vector set. This process leads to generating a small number of trees during the random forest phase and therefore
speeds up the features selection computations. Also, it may be better not to execute the algorithm continuously
but rather intermittently, especially when suspicious activity is observed or by selecting vector sets at intervals
that may be converged or diverged, to ensure that no long time-consumption in processing. The pseudocode
is presented in Table 4. For each abnormal vector set, the dominant features are produced by using the cosine
similarity and random forest trees. Then these dominant features are employed to obtain the best machine

learning classification.

Table 4. The ASMDF pseudocode.

Input: Vector sets

Output: The dominant features

Initial vector set counter

if normal vector set received then wait new vector set

else if abnormal vector set received begin
Calculate the cosine similarity matrix for the vector set
if cosine matrix calculated begin
Generate the random forest trees from the cosine matrix
Output the dominant features
Send the vector set with its dominant features to Stage 3
end

end

repeat with frequently input data

4.2.2. The feature selection strategy

The ASMDF algorithm selects the dominant features only from the traditional features while every guide feature
follows its corresponding dominant feature. Logically, the guide features are not actual data, but 0’s and 1’s
that are considered the intersection points. It is like two tied layers, a primary layer (traditional) and secondary
layer (guide). If the ASMDF algorithm selects two traditional features this means that the vector set has four

dominant features, two traditional and two guide features.
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5. Simulation results

The simulator (R language on Intel CPU 2.6 GHz, 64-bit 4GB RAM, running Linux system) was run several
times for 7 days for generating average results, using both the traditional and the guide features. In this section,
we focus on CodeRed-I, Slammer, and Nimda attacks as examples or samples and employ a variety of machine
learning techniques to evaluate our proposed algorithms. We extracted periods from the update messages,
which are collected as mentioned in Section 3, and contain these three types of attacks to build the training
datasets as shown in Table 5. Moreover, the test instances for each dataset are presented in two ways: the
total number of instances and the number of vector sets that are used to simulate the time-series data, where
the vector sets are counted by the ASMDF algorithm. Also, the ASMDF algorithm selects different dominant
features for each vector set, and every guide feature follows its corresponding dominant feature as explained in
Section 4.2.2. The average block size is K = 100 for the moving average smoother. The simulation metrics are:
Tsec, presents the training time in seconds; ACC, the ACCuracy for the testing phase; false negative rate (FN),
the proportion of positive cases (attacks) incorrectly classified as negative (not attacks); and false positive rate
(FP), the proportion of negative cases (not attacks) incorrectly classified as positive (attacks).

In the next subsections, we analyze the performance with and without the guide features generated by
the proposed GFG algorithm. Moreover, we compare the ASMDF algorithm with existing feature selection
algorithms to show the differences between their speeds in selecting the dominant features for the vector set, as

seen in Section 5.4.

Table 5. Training and testing datasets.

Data set Train instances Test instances
Slammer-Normal 8723 10,277 (1159 vector sets)
Nimda-Normal 12,338 14,805 (2615 vector sets)
CodeRed I-Normal 9948 10,443 (1340 vector sets)

5.1. Decision tree analysis

In this section, Tables 6, 7, and 8 present four decision tree models, which are categorized as supervised
machine learning algorithms [20]. CART is the classification and regression tree model, CIT is conditional
inference tree, RF is random forest, and GBM is gradient boosting model. The results were obtained by using
the datasets and after testing all the mentioned vector sets. We got improvements in ACC, FN, and PN after
using the guide features, as shown in the tables for the three types of attacks, CodeRed-I, Nimda, and Slammer.
Moreover, when comparing the results in the three tables we found that CIT provided a better rate of increase
in accuracy (ACC) when compared with the results without GFG guide features, and the improvement rates
were 10.96%, 13.39%, and 6.81% for CodeRed-I, Nimda, and Slammer, respectively. Besides, when we compared
our work results with the GFG guide features to the results without GFG guide features, both CIT and RF
gave better decrease rates with FN by 8.09% and 6.07% and by 3.4% and 3.86%, respectively, for CodeRed-I
and Salmmer, respectively. With Nimda, both CIT and GBM gave better decrease rates with FN by 7.03%
and 6.29%, respectively. It is clear that in Nimda attacks, the better rates occurred (CART and RF with FN)
because the Nimda instances, which were used in training, are relatively close to normal instances. Also, CART
presented the best improvement rates with FP especially for CodeRed-I (39.32%) and Slammer (29.81%) but

gave the lowest improvement rates for FN in all cases of attacks. We concluded that CIT is clearly the best
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choice, especially for measuring ACC and FN, because it offers several advantages over other approaches. First,
feature selection is unbiased (the traditional methods are biased towards features with many possible splits).
Second, there is no need to ‘prune’ the resulting tree to avoid overfitting. Third, the algorithm returns values

that show how confident one can be about every split.

Table 6. Decision trees with CodeRed-I attack.

Without GFG guide features With GFG guide features
T.sec | ACC FN FP T.sec | ACC FN FP
CART | 0.188 | 0.8451 | 0.0544 | 0.6367 || 0.09 | 0.9365 | 0.0259 | 0.2435

CIT | 0.154 | 0.8275 | 0.1061 | 0.4903 || 0.082 | 0.9371 | 0.0252 | 0.2434

RF 1.942 | 0.8915 | 0.0829 | 0.2485 || 1.258 | 0.9394 | 0.0222 | 0.2457
GBM | 5.846 | 0.8431 | 0.0737 | 0.5452 5.9 10.9376 | 0.0243 | 0.2440

Table 7. Decision trees with Nimda attack.

Without GFG guide features With GFG guide features
T.sec | ACC FN FP T.sec | ACC FN FP
CART | 0.248 | 0.6077 | 0.2425 | 0.4992 || 0.266 | 0.6914 | 0.2551 | 0.3836

CIT | 0.106 | 0.5851 | 0.2399 | 0.5398 || 0.15 | 0.7190 | 0.1696 | 0.4371

RF 2.596 | 0.7156 | 0.0589 | 0.4422 | 2.906 | 0.7817 | 0.2574 | 0.1639
GBM | 7.438 | 0.6310 | 0.2597 | 0.4456 || 7.574 | 0.7162 | 0.1968 | 0.4058

Table 8. Decision trees with Slammer attack.

Without GFG guide features With GFG guide features
T.sec | ACC FN FP T.sec | ACC FN FP
CART | 0.132 | 0.8998 | 0.0512 | 0.3592 || 0.058 | 0.9675 | 0.0271 | 0.0611

CIT 0.11 | 0.8995 | 0.0606 | 0.3109 || 0.068 | 0.9676 | 0.0266 | 0.0629

RF 1.35 | 0.9195 | 0.0569 | 0.1997 || 0.94 | 0.9747 | 0.0183 | 0.0611
GBM | 5.188 | 0.9049 | 0.0545 | 0.3109 || 5.214 | 0.9693 | 0.0247 | 0.0629

5.2. Neural network analysis

In this section, Tables 9, 10, and 11 present two neural network models, which are categorized as supervised
machine learning algorithms [21]. ELM is extreme learning machine and SGD is stochastic gradient descent.
We noticed improvements in ACC, FN, and PN rates after using the guide features, as shown in the tables for
the three types of attacks. Also, it is obvious that SGD achieved better results compared to ELM. In addition,
when we compared our results with the GFG guide features to the results without GFG guide features for the
three types of attacks, we found that SGD provided better increase in ACC rates (between 9.76% and 32.36%),
better decrease in FN rates (between 9.51% and 32.12%), and better decrease in FP rates (reaching 31.06%). As
happened before with Nimda attacks, the better rates occurred (ELM and SGD with FP) because the instances
used in training were relatively close to normal instances. We concluded that SGD is clearly the best choice
not only as it gave the best increased rates in results but also because it offers fast convergence, efficiency, and

ease of implementation and we observed that it does well with time-series data.
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Table 9. Neural network models with CodeRed-I attack.

Without GFG guide features With GFG guide features
T.sec | ACC FN FP T.sec | ACC FN FP
ELM | 2.25 | 0.8073 | 0.1043 | 0.5746 || 2.95 | 0.8255 | 0.0884 | 0.4864
SGD | 1.52 | 0.7804 | 0.1260 | 0.5419 || 0.144 | 0.9338 | 0.0309 | 0.2313

Table 10. Neural network models with Nimda attack.

Without GFG guide features With GFG guide features
T.sec | ACC FN FP T.sec | ACC FN FP
ELM | 2.49 | 0.6079 | 0.3834 | 0.3844 3.4 10.6209 | 0.3334 | 0.4149
SGD | 1.518 | 0.5741 | 0.6119 | 0.2332 || 1.532 | 0.6717 | 0.4278 | 0.2654

Table 11. Neural network models with Slammer attack.

Without GFG guide features With GFG guide features
T.sec | ACC FN FP T.sec | ACC FN FP
ELM | 1.974 | 0.8689 | 0.0825 | 0.3769 || 2.588 | 0.8788 | 0.0676 | 0.3305
SGD | 1.528 | 0.6406 | 0.3536 | 0.2365 || 0.112 | 0.9642 | 0.0324 | 0.0538

5.3. SVM and BN analysis

In this section, we present the analysis results when using SVM and BN machine learning models. We
discovered improvements in ACC, FN, and PN rates after using the guide features for the three types of
attacks. Tables 12, 13, and 14 show these results. When we compared our results with the GFG guide features
to the results without GFG guide features for the three types of attacks, we saw that SVM provided better
increase in ACC rates (between 10.02% and 19.72%) and better decrease in FN rates (between 5.05% and
35.44%). BN gave ACC rates between 6.4% and 10.07% and a better decrease in FP rates (between 16.37%
and 43.99%). Again, like with Nimda attacks, the better rates occurred (SVM with FP and BN with FN)
because the instances used in training were relatively close to normal instances. Although SVM achieved high
improvement rates, it has high computational complexity because of the quadratic optimization problem that
needs to be solved and it consumes more time. We recommend that BN be the best choice regardless of the

fact that it offers fewer improvements than SVM, especially when dealing with time-series data.

Table 12. SVM and BN with CodeRed-I attack.

Without GFG guide features With GFG guide features
T.sec | ACC FN FP T.sec | ACC FN FP
SVM | 13.29 | 0.8374 | 0.0756 | 0.5796 || 2.814 | 0.9376 | 0.0251 | 0.2413

BN | 0.012 | 0.8353 | 0.0574 | 0.6789 || 0.012 | 0.9360 | 0.0274 | 0.2390

5.4. Comparisons with feature selection algorithms

In this section, we compared the proposed ASMDF algorithm employing underlying cosine similarity with
existing feature selection algorithms [22] by calculating the average processing time to select the dominant

features from the vector set, as shown in Table 15. The results were obtained by using the datasets and after
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Table 13. SVM and BN with Nimda attack.

Without GFG guide features With GFG guide features
T.sec | ACC FN FP T.sec | ACC FN FP
SVM | 30.71 | 0.6068 | 0.4942 | 0.2517 || 27.77 | 0.7214 | 0.1398 | 0.4732

BN | 0.006 | 0.6366 | 0.0267 | 0.8352 || 0.008 | 0.7006 | 0.0338 | 0.6715

Table 14. SVM and BN with Slammer attack.

Without GFG guide features With GFG guide features
T.sec | ACC FN FP T.sec | ACC FN FP
SVM | 6.256 | 0.7693 | 0.2228 | 0.2724 || 1.102 | 0.9665 | 0.0282 | 0.0611

BN | 0.002 | 0.8863 | 0.0565 | 0.4160 || 0.006 | 0.9596 | 0.0387 | 0.0495

testing all the mentioned vector sets. Also, we used the GFG algorithm to generate the vector sets and replaced
the proposed ASMDF algorithm with these feature selection algorithms one by one to measure the differences
in processing time among them. These algorithms are CFS, symmetrical Uncertainty (SU), information gain
(IG), gain ratio (GR), random forest (RF), and relief. We used the same simulation conditions for all these
algorithms and calculated the average processing time for selecting the dominant features for the vector set
received by these algorithms. As shown in Table 15, the proposed ASMDF algorithm is faster than SU by 3
times at least. Moreover, it is faster than the traditional RF by 8 times. CF'S is faster than ASMDF, but feature

selection using all other types including our proposed algorithm provided better dominant feature selections.

Table 15. The average processing time (s) for selecting the dominant features.

CFS | ASMDF SU GR IG RF Relief
CodeRed-1 | 0.0048 | 0.0094 | 0.0284 | 0.0286 | 0.0293 | 0.0784 | 0.6079
Nimda 0.0021 | 0.0049 | 0.0149 | 0.0157 | 0.0148 | 0.0399 | 0.2762
Slammer | 0.0041 | 0.0093 | 0.0281 | 0.0278 | 0.0280 | 0.0737 | 0.5138

6. Conclusion

In this paper, we introduced a new idea for improving anomaly detection in time-series data by new guide
features and feature selection. Previous studies usually focused on “inventing” more intricate models for different
learning tasks. However, in some real-time systems, this complication makes hard for these models to work well.
Our paper provides an alternative perspective by optimizing the feature set, which is good for improving the
prediction and performance at the same time. To achieve this, we proposed two algorithms, GFG and ASMDF,
in order to help detect and classify anomalies and to improve the performance of the anomaly detection process
in time-series data. Moreover, we examined our proposed algorithms using several types of machine learning
techniques and concluded that it has shown very promising feasibility for practical use and the GFG algorithm
has the potential of detecting real outliers in noisy datasets. One of the most important additions of our research
compared to much of the research in this field is the need to address and improve the features before being
exploited. As a future work, we will focus on other imbalance types and try to make use of suitable techniques
and therefore study the differences between anomalies and other imbalance types of traffic using our proposed

algorithms.
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