The relation between b-weakly compact operator and KB-operator

Bahri TURAN∗, Birol ALTIN©
Department of Mathematics, Faculty of Science, Gazi University, Ankara, Turkey

Received: 05.08.2019 • Accepted/Published Online: 01.10.2019 • Final Version: .201

Abstract: Our aim is to solve the problem asked by Bahramnezhad and Azar in "KB-operators on Banach lattices and their relationships with Dunford-Pettis and order weakly compact operators". We show that a continuous operator R from a Banach lattice N into a Banach space M is a b-weakly compact operator if and only if R is a KB-operator.

Key words: b-weakly compact operator, KB-operator

1. Introduction

In [6], Bahramnezhad and Azar defined a new classes of operators, named KB-operator and they have examined some of their properties and asked the following problem;

Problem 1.1 ([6], Problem 2.27) Give an operator R from a Banach lattice N into a Banach space M which is a KB-operator but is not b-weakly compact.

We answer the question in the negative. A lot of properties and results on b-weakly compact operators were given in [2 − 5, 7]. Now, we recall the definitions of b-weakly compact operator and KB-operator.

Definition 1.2 Let R be a continuous operator from a Banach lattice N into a Banach space M.

(i) R is called KB-operator if $R(x_n)$ has a norm convergent subsequence in M for every positive increasing sequence (x_n) of the closed unit ball B_N of N.

(ii) R is called b-weakly compact if $R(x_n)$ is norm convergent for every positive increasing sequence (x_n) of the closed unit ball B_N of N.

For the basic theory on vector lattices and for unexplained terminology we refer to [1, 8].

2. Section

We will prove that the classes of KB-operators and the b-weakly compact operators are the same.

Theorem 2.1 Let R be an operator from a Banach lattice N into a Banach space M. R is a b-weakly compact operator if and only if R is a KB-operator.

∗Correspondence: bturan@gazi.edu.tr

2010 AMS Mathematics Subject Classification: 46B42, 47B60

This work is licensed under a Creative Commons Attribution 4.0 International License.
well known canonical embedding of $N \in \mathbb{R}_+$ by Theorem 1.7 in [1].

On the other hand, if there exists a subsequence (x_k) of (x_n), let us define

$$\Psi : N'_+ \rightarrow \mathbb{R}_+, \ f \rightarrow \Psi(f) = \sup f(x_k).$$

For each k and $f \in N'_+$ we have

$$f(x_k) = |f(x_k)| \leq \|f\| \|x_k\| \leq \|f\|.$$

Then, $\sup f(x_k) \in \mathbb{R}_+$. We claim that Ψ is additive. To see this, let $f,g \in N'_+$.

$$\Psi(f + g) = \sup [(f + g)(x_k)] = \sup [f(x_k) + g(x_k)] \leq \sup f(x_k) + \sup g(x_k) = \Psi(f) + \Psi(g).$$

On the other hand, if $x_m, x_t \in (x_k)$, then pick $x_i \in (x_k)$ with $x_m \leq x_t$ and $x_t \leq x_i$, and note that

$$f(x_m) + g(x_t) \leq f(x_i) + g(x_i) \leq \sup [(f + g)(x_i)] = \Psi(f + g).$$

Using a well-known technique (e.g., [1, p.14]), we have $\Psi(f) + \Psi(g) \leq \Psi(f + g)$. Therefore, Ψ is additive and by Theorem 1.7 in [1] Ψ extends uniquely to a positive operator from N' into \mathbb{R} (we call Ψ again). Hence, $\Psi \in N''$. It is easy to see that Ψ is an upper bound of (x_k) in N'' (where (x_k) is the image of (x_k) under the well known canonical embedding of N into the bidual N''). There exists G in N'' with $(x_k)'' \uparrow G$ as N'' is Dedekind complete. Since $(x_k)''(f) \rightarrow G(f)$ for each $f \in N'_+$, we have $(x_k)'' \rightarrow G$ with respect to $\sigma(N'', N')$. Thus, all subsequences of (x_n) are convergent to the same limit G with respect to $\sigma(N'', N')$. By the hypothesis, there exists a subsequence (x_{n_k}) of (x_n) and $y \in M$ such that $R(x_{n_k}) \rightarrow y$ with respect to norm-topology.

This leads to $[R(x_{n_k})]'' \rightarrow y''$ in M'' with respect to norm-topology which implies $[R(x_{n_k})]'' \rightarrow y''$ in M'' with respect to $\sigma(M'', M')$. The continuity of $R'' : (N'', \sigma(N'', N')) \rightarrow (M'', \sigma(M'', M'))$ yields $R'' [(x_k)'' \rightarrow R''(G)$ and $[R(x_{n_k})]'' \rightarrow y''$ with respect to $\sigma(M'', M')$. Since $R'' [(x_{n_k})'' = [R(x_{n_k})]''$, we have $R''(G) = y''$. So, this means that every norm convergent a subsequence of $R(x_n)$ has the same norm limit. Now, we will show that $R(x_n) \rightarrow y$ in M with respect to norm-topology. We assume that $R(x_n)$ does not converge to y. Thus, there exist $\varepsilon > 0$ and a subsequence (x_m) of (x_n) such that $\|R(x_m) - y\| > \varepsilon$ for all m. By the hypothesis and the above conclusion there exists a subsequence (x_{m_k}) of (x_m) such that $R(x_{m_k}) \rightarrow y$ with respect to norm-topology, which is a contradiction.

\[\square \]

References
